
Вопрос задан 01.05.2023 в 12:42.
Предмет Алгебра.
Спрашивает Popadin Evgen.
Cos85° *cos40°-sin85°*sin(-40°) --------------------------------- = Sin40°*cos5°+cos40°*sin5°


Ответы на вопрос

Отвечает Исаков Захар.



Отвечает Шилина Алина.
cos85⁰*cos40⁰ - sin85⁰*sin(-40⁰) = cos85⁰*cos40⁰ + sin85⁰*sin40 = cos(85-40) = cos 45⁰ = 
sin40⁰*cos5⁰+cos40⁰sin5⁰ = sin (40+5) = sin 45⁰ =

0
0
sin40⁰*cos5⁰+cos40⁰sin5⁰ = sin (40+5) = sin 45⁰ =



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Let's simplify the left side of the equation first:
cos85° *cos40°-sin85°*sin(-40°)
Using the identity cos(-x) = cos(x), sin(-x) = -sin(x), we can simplify sin(-40°) to -sin40°:
cos85° *cos40°-sin85°*(-sin40°)
cos85° *cos40°+sin85°*sin40°
Next, let's simplify the right side of the equation:
Sin40°*cos5°+cos40°*sin5°
Using the identity sin(x+y) = sin(x)cos(y) + cos(x)sin(y), we can rewrite this as:
sin(40° + 5°)
sin45°
Now, we can write the equation as:
cos85° *cos40°+sin85°*sin40° = sin45°
This looks like the identity cos(x-y) = cos(x)cos(y) + sin(x)sin(y), where x = 85° and y = 50°:
cos(85°-50°) = cos85° *cos50° + sin85°*sin50°
cos35° = cos85° *cos50° + sin85°*sin50°
Using the identity sin(90-x) = cos(x), we can rewrite sin50° as cos(40°):
cos35° = cos85° *cos50° + sin85°*cos40°
Now, using the identity cos(90-x) = sin(x), we can rewrite cos85° as sin(5°):
cos35° = sin5° *cos50° + cos5°*cos40°
Using the identity sin(x+y) = sin(x)cos(y) + cos(x)sin(y), we can rewrite sin5°cos50° as:
sin(5°+50°) = sin55°
cos35° = sin55° + cos5°*cos40°
Subtracting sin55° from both sides, we get:
cos35° - sin55° = cos5°*cos40°
Using the identity cos(x+y) = cos(x)cos(y) - sin(x)sin(y), we can rewrite cos35° as:
cos(40°-5°) = cos40°cos5° - sin40°sin5°
cos40°cos5° - sin40°sin5° - sin55° = cos5°*cos40°
cos5°*cos40° - cos5°*sin40°sin5° - sin55° = 0
cos5°*(cos40° - sin40°sin5°) - sin55° = 0
cos40° - sin40°sin5° = sin55°/cos5°
cos40° - sin40°tan5° = sin55°/cos5°
Using a calculator, we can find the values of sin55°/cos5° and tan5°:
sin55°/cos5° ≈ 11.43
tan5° ≈ 0.0875
Substituting these values, we get:
cos40° - sin40°*0.0875 = 11.43
cos40° - 0.035sin40° = 11.43
We can now use numerical methods (such as Newton's method) to find an approximate value for sin40°:
Let f(x) = cos40° - 0.035sin(x) - 11.43
f'(x) = -0.035cos(x)
Starting with an initial guess of x = 0 (which corresponds to sin0° = 0), we can use the formula:
x1 = x0 - f(x0)/f'(x0)
x1 = 0 - f(0)/f'(0)
x1 ≈ -141.43
This corresponds to sin(-141.43°) ≈ -0.6426. Since sine is an odd function, this also means that sin(141.43°) ≈ 0.6426.
Therefore, the equation is approximately true and we have:
cos85° *cos40°+sin85°*sin40° ≈ sin45°
which confirms the identity sin(85°-40°) = sin45°.
0
0
cos85° *cos40°-sin85°*sin(-40°)
Using the identity cos(-x) = cos(x), sin(-x) = -sin(x), we can simplify sin(-40°) to -sin40°:
cos85° *cos40°-sin85°*(-sin40°)
cos85° *cos40°+sin85°*sin40°
Next, let's simplify the right side of the equation:
Sin40°*cos5°+cos40°*sin5°
Using the identity sin(x+y) = sin(x)cos(y) + cos(x)sin(y), we can rewrite this as:
sin(40° + 5°)
sin45°
Now, we can write the equation as:
cos85° *cos40°+sin85°*sin40° = sin45°
This looks like the identity cos(x-y) = cos(x)cos(y) + sin(x)sin(y), where x = 85° and y = 50°:
cos(85°-50°) = cos85° *cos50° + sin85°*sin50°
cos35° = cos85° *cos50° + sin85°*sin50°
Using the identity sin(90-x) = cos(x), we can rewrite sin50° as cos(40°):
cos35° = cos85° *cos50° + sin85°*cos40°
Now, using the identity cos(90-x) = sin(x), we can rewrite cos85° as sin(5°):
cos35° = sin5° *cos50° + cos5°*cos40°
Using the identity sin(x+y) = sin(x)cos(y) + cos(x)sin(y), we can rewrite sin5°cos50° as:
sin(5°+50°) = sin55°
cos35° = sin55° + cos5°*cos40°
Subtracting sin55° from both sides, we get:
cos35° - sin55° = cos5°*cos40°
Using the identity cos(x+y) = cos(x)cos(y) - sin(x)sin(y), we can rewrite cos35° as:
cos(40°-5°) = cos40°cos5° - sin40°sin5°
cos40°cos5° - sin40°sin5° - sin55° = cos5°*cos40°
cos5°*cos40° - cos5°*sin40°sin5° - sin55° = 0
cos5°*(cos40° - sin40°sin5°) - sin55° = 0
cos40° - sin40°sin5° = sin55°/cos5°
cos40° - sin40°tan5° = sin55°/cos5°
Using a calculator, we can find the values of sin55°/cos5° and tan5°:
sin55°/cos5° ≈ 11.43
tan5° ≈ 0.0875
Substituting these values, we get:
cos40° - sin40°*0.0875 = 11.43
cos40° - 0.035sin40° = 11.43
We can now use numerical methods (such as Newton's method) to find an approximate value for sin40°:
Let f(x) = cos40° - 0.035sin(x) - 11.43
f'(x) = -0.035cos(x)
Starting with an initial guess of x = 0 (which corresponds to sin0° = 0), we can use the formula:
x1 = x0 - f(x0)/f'(x0)
x1 = 0 - f(0)/f'(0)
x1 ≈ -141.43
This corresponds to sin(-141.43°) ≈ -0.6426. Since sine is an odd function, this also means that sin(141.43°) ≈ 0.6426.
Therefore, the equation is approximately true and we have:
cos85° *cos40°+sin85°*sin40° ≈ sin45°
which confirms the identity sin(85°-40°) = sin45°.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili