
Tg(П/2+a),если ctga=4/3


Ответы на вопрос

Tg(П/2+a),если ctga=4/3
tg(π/2 + a) = - ctga = - 4/3



To solve this problem, we can use the identity:
scssctg(a) = 1 / tan(a)
Since ctg(a) = 4/3, we have:
scss1 / tan(a) = 4/3
Multiplying both sides by tan(a), we get:
scsstan(a) = 3/4
We know that:
scsstg(П/2 + a) = -ctg(a)
So we have:
scsstg(П/2 + a) = -ctg(a) = -(4/3)
Now we need to find the quadrant in which the angle (П/2 + a) lies. Since tg(П/2 + a) is negative, (П/2 + a) must lie in the second or fourth quadrant.
Since tan(a) = 3/4 is positive, a must lie in the first or third quadrant. Therefore, (П/2 + a) lies in the fourth quadrant, where both tg and ctg are negative.
Using the fact that tg(П/2 + a) = -(4/3) and (П/2 + a) lies in the fourth quadrant, we can use the reference angle of a right triangle to find the value of tg(П/2 + a):
Let's consider a right triangle with an angle x in the fourth quadrant. The reference angle of x is the acute angle formed by the terminal side of x and the x-axis. Let's call this reference angle y.
Since tan(y) = 3/4, we can label the opposite side of y as 3 and the adjacent side as 4. Using the Pythagorean theorem, we can find the hypotenuse:
scsshypotenuse^2 = 3^2 + 4^2 = 25
hypotenuse = sqrt(25) = 5
Now we can find the value of tg(y):
scsstg(y) = opposite / adjacent = 3/4
Since (П/2 + a) is the supplementary angle of y, we have:
scsstg(П/2 + a) = -tg(y) = -(3/4) = -0.75
Therefore, tg(П/2 + a) = -0.75 when ctg(a) = 4/3 and (П/2 + a) lies in the fourth quadrant.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili