
Решите, пожалуйста sin2x cosx = cos2x sinx cos5x cosx = cos4x 3+sin2x = 4sin^2x cos2x + cos^2x +
sinx cos x = 0 3 cos 2x + sin^2x + 5 sinx cosx = 0

Ответы на вопрос

sin2x cosx = cos2x sinx
2sinxcosxcosx=cos2xsinx sinx=0 x=Пk
2cos^2x=cos2x
2cos^2x=2cos^2x-1 ∅
ответ x=Пk
cos5x cosx = cos4x
cos4x+cos6x=2cos4x
cos6x-cos4x=0
-2sin5xsinx=0
x=Пk
x=Пk/5
3+sin2x = 4sin^2x
3sin^2x+3cos^2x+2sinxcosx=4sin^2x
sin^2x-3cos^2x-2sinxcosx=0
sinx/cosx-3cosx/sinx-2=0
tgx-3/tgx-2=0
tg^2x-2tgx-3=0 tgx=3 tgx=-1
x=-П/4+Пk
x=arctg3+Пk
cos2x + cos^2x + sinx cos x = 0
2cos^2x-sin^2x+sinxcosx=0 |sinxcosx
2cosx/sinx-sinx/cosx+1=0
2ctgx-tgx+1=0
2/tgx-tgx+1=0
-tg^2x+tgx+2=0 tg^2x-tgx-2=0
tgx=(1+-3)/2 tgx=2 tgx=-1
x=-П/4+Пk
x=arctg2+Пk
3 cos 2x + sin^2x + 5 sinx cosx = 0
3cos^2x-2sin^2x+5sinxcosx=0
3cosx/sinx-2sinx/cosx+5=0
3/tgx-2tgx+5=0
2tgx-3/tgx-5=0
2tg^2x-5tgx-3=0
tgx=(5+-7)/4 tgx=3 tgx=-1/2
x=arctg3+Пk
x=-arctg1/2+Пk



- sin2x cosx = cos2x sinx
Starting with the left-hand side:
sin2x cosx = 2sinxcosx * cosx (using the double angle formula for sine) = 2cosxsinxcosx = cosx(2sinxcosx)
Now, using the double angle formula for cosine:
cos2x sinx = (cos^2 x - sin^2 x)sinx = cosx(cosxsinx - sinxcosx) = cosx( sinx cosx - sinx cosx) = 0
Therefore, sin2x cosx = cos2x sinx is true for any value of x.
- cos5x cosx = cos4x
Using the identity cos(a+b) = cos(a)cos(b) - sin(a)sin(b), we can write:
cos5x cosx = (cos4x cosx - sin4x sinx)cosx (applying the formula twice) = cos4x cosx^2 - sin4x sinx cosx = cos4x (1 - sin^2 x) - sin4x sinx
Now, using the identity sin^2 x + cos^2 x = 1 and simplifying:
cos5x cosx = cos4x - cos4x sin^2 x - sin4x sinx = cos4x(1-sin^2x) - sin4x sinx = cos4x cos^2 x - sin4x sinx = cos4x (1 - sin^2 x) - cos4x sin^2 x (applying the identity again) = cos4x
Therefore, cos5x cosx = cos4x is true for any value of x.
- 3+sin2x = 4sin^2x cos2x + cos^2x + sinx cos x = 0
We can rearrange the equation as:
4sin^2x cos2x + cos^2x + sinx cos x = -3 - sin^2 x
Now, using the identity sin^2 x + cos^2 x = 1, we can write:
4sin^2x cos2x + cos^2x + sinx cos x = -(sin^2 x + 3 cos^2 x)
Using the identity cos2x = 1 - 2sin^2x, we can write:
4sin^2x (1 - 2sin^2x) + cos^2x + sinx cos x = -(sin^2 x + 3(1 - sin^2 x)) 4sin^2x - 8sin^4x + cos^2x + sinx cos x = -2sin^2 x 8sin^4x - 3sin^2x + cos^2x + sinx cos x + 2 = 0
Unfortunately, this equation cannot be easily solved algebraically, and we need to resort to numerical or graphical methods to find approximate solutions.
- 3 cos 2x + sin^2x + 5 sinx cosx = 0
Using the identity cos2x = 1 - 2sin^2x, we can write:
3(1 - 2sin^2x) + sin^2x + 5sinx cosx = 0 3 - 6sin^2x + sin^2x + 5sinx cosx = 0 -5sin^


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili