Помогите решить: 1) 3^x - 3^(x-2) = 72 2) log3(x^2 -7x+15) = 2 3)3^(x^2-7x+10)>3^-2 4)3^(x-1)
+ 3^(x-2) + 3^(x-3) =3159Ответы на вопрос

- 3^x - 3^(x-2) = 72
First, we can simplify the equation by using the properties of exponents:
3^x - 3^(x-2) = 3^x - (1/9) * 3^x = (8/9) * 3^x
Now we can rewrite the equation as:
(8/9) * 3^x = 72
Multiplying both sides by (9/8), we get:
3^x = 81
Taking the logarithm base 3 of both sides, we obtain:
x = 4
Therefore, the solution to the equation is x = 4.
- log3(x^2 - 7x + 15) = 2
We can rewrite the equation in exponential form:
3^2 = x^2 - 7x + 15
9 = x^2 - 7x + 15
Subtracting 9 from both sides, we get:
x^2 - 7x + 6 = 0
Factoring the left-hand side, we obtain:
(x - 6)(x - 1) = 0
Therefore, the solutions to the equation are x = 6 and x = 1.
- 3^(x^2-7x+10) > 3^-2
We can simplify the right-hand side of the inequality as:
3^-2 = 1/9
Now we can rewrite the inequality as:
3^(x^2-7x+10) > 1/9
Taking the logarithm base 3 of both sides, we obtain:
x^2 - 7x + 10 < -2
Rearranging the terms, we get:
x^2 - 7x + 12 < 0
Factoring the left-hand side, we obtain:
(x - 3)(x - 4) < 0
Therefore, the solutions to the inequality are:
3 < x < 4
- 3^(x-1) + 3^(x-2) + 3^(x-3) = 3159
We can simplify the left-hand side of the equation as:
3^(x-3) * (3^3 + 3^2 + 3^1) = 39 * 3^(x-3)
Now we can rewrite the equation as:
39 * 3^(x-3) = 3159
Dividing both sides by 39, we get:
3^(x-3) = 81
Taking the logarithm base 3 of both sides, we obtain:
x - 3 = 4
Therefore, the solution to the equation is x = 7.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
