Вопрос задан 19.04.2021 в 04:02. Предмет Алгебра. Спрашивает Рафиков Руслан.

Как решить ,Степень с натуральным показателем 24³/18⁴?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Клепикова Полина.
104976:13824=7,5 вот
0 0
Отвечает Дычок Диана.

\frac{24^{3}}{18^{4}}=\frac{(3*8)^{3}}{(2*9)^{4}}=\frac{3^3*(2^3)^{3}}{2^4*(3^2)^{4}}=\\\\=\frac{3^3*2^{9}}{2^4*3^{8}}=\frac{2^{9-4}}{3^{8-3}}=\frac{2^{5}}{3^{5}}=\frac{32}{243}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этого выражения можно использовать свойства степеней:

a^m / a^n = a^(m-n)

Поэтому, чтобы решить выражение 24³/18⁴, мы можем переписать его в виде:

24³/18⁴ = (2³ * 3)³ / (2 * 3²)⁴

Затем мы можем сократить наименьшие общие множители в числителе и знаменателе, чтобы упростить выражение:

(2³ * 3)³ / (2 * 3²)⁴ = (2³ / 3²)³ / 2⁴

Теперь мы можем упростить выражение, возводя числа в степени:

(2³ / 3²)³ / 2⁴ = (8 / 9)³ / 16 = 512 / 6561

Итак, ответ: 512/6561.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос