
Помогите решить уравнения 1) |x|-х=2 2) (х^2)-5|x|+6=0 3) |3x+2|=11-х 4) |(x^2)-9|=9-(x^2)


Ответы на вопрос

1) lxl=x+2, x+2>=0, x>=-2, x=x+2 или x=-x-2, 0 не=2, 2x=-2, x=-1
2)x>=0, то x^2-5x+6=0, корни 2 и 3, если х<0, то x^2+5x+6=0, корни -2 и -3
3) 11-x>=0, x<=11, 3x+2=11-x или 3x+2=x-11, 4x=9 или 2x=-13, x=9/4 или x=-13/2
4) можно подбором х=3 или х=-3



- |x|-x=2
We can solve this equation by considering two cases, one for x >= 0 and one for x < 0.
Case 1: x >= 0 In this case, |x| = x, so the equation becomes: x - x = 2 which simplifies to 0 = 2, which is not true. Therefore, there are no solutions in this case.
Case 2: x < 0 In this case, |x| = -x, so the equation becomes: -x - x = 2 which simplifies to -2x = 2, or x = -1. This is a valid solution since |-1| - (-1) = 1 + 1 = 2.
Therefore, the only solution to the equation |x|-x=2 is x = -1.
- x^2 - 5|x| + 6 = 0
We can solve this equation by considering two cases, one for x >= 0 and one for x < 0.
Case 1: x >= 0 In this case, |x| = x, so the equation becomes: x^2 - 5x + 6 = 0 which factors as (x-3)(x-2) = 0. Therefore, the solutions in this case are x = 2 and x = 3.
Case 2: x < 0 In this case, |x| = -x, so the equation becomes: x^2 + 5x + 6 = 0 which factors as (x+3)(x+2) = 0. Therefore, the solutions in this case are x = -2 and x = -3.
Therefore, the solutions to the equation x^2 - 5|x| + 6 = 0 are x = -3, -2, 2, and 3.
- |3x+2| = 11-x
We can solve this equation by considering two cases, one for 3x+2 >= 0 and one for 3x+2 < 0.
Case 1: 3x+2 >= 0 In this case, |3x+2| = 3x+2, so the equation becomes: 3x+2 = 11-x which simplifies to 4x = 9, or x = 9/4. This is a valid solution since |3(9/4)+2| = 11-(9/4).
Case 2: 3x+2 < 0 In this case, |3x+2| = -(3x+2), so the equation becomes: -(3x+2) = 11-x which simplifies to -3x-13 = 0, or x = -13/3. This is a valid solution since |-3(-13/3)+2| = 11-(-13/3).
Therefore, the solutions to the equation |3x+2| = 11-x are x = -13/3 and x = 9/4.
- |x^2-9| = 9-(x^2)
We can solve this equation by considering two cases, one for x^2-9 >= 0 and one for x^2-9 < 0.
Case 1: x^2-9 >= 0 In this case, |x^2-9| = x^2-9, so the equation becomes: x^2-9 = 9-x^2 which simplifies to 2x^2 = 18


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili