Вопрос задан 04.04.2021 в 08:59. Предмет Алгебра. Спрашивает Филиппов Никита.

Сколькими способами можно поставить на шахматную доску черного и белого коня так, чтобы они не били

друг друга?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шутова Настя.
1) Если один конь стоит в углу (4 варианта), то он бьет 2 клетки.
На 1 рис. кони и побитые клетки у одного коня обозначены красным.
Значит, второй может стоять на любую из оставшихся 64-1-2 = 61 клеток.
Всего 61*4 = 244 варианта.
2) Если конь стоит рядом с углом (8 вариантов), то он бьет 3 клетки.
На 1 рис. они обозначены зеленым.
Второй может встать на любую из 64 - 1 - 3 = 60 клеток.
Всего 8*60 = 480 вариантов.
3) Если конь стоит на краю (16 вариантов), то он бьет 4 клетки.
На 1 рис. они обозначены синим.
Второй может встать на любую из 64 - 1 - 4 = 59 клеток.
Всего 16*59 = 944 варианта.
4) Если конь стоит в углу на втором от края ряду (4 варианта),
то он бьет 4 клетки. На рис. 2 они обозначены красным.
Второй может встать на любую из 64 - 1 - 4 = 59 клеток.
Всего 4*59 = 236 вариантов.
5) Если конь стоит во 2 ряду в середине (16 вариантов),
то он бьет 6 клеток. На рис. 2 они обозначены зеленым.
Второй может встать на любую из 64 - 1 - 6 = 57 клеток.
Всего 16*57 = 912 вариантов.
6) Если конь стоит в центре (16 вариантов), то он бьет 8 клеток.
На рис. 2 они обозначены синим. Я не стал ставить цифры на битых клетках, чтобы не загромождать рисунок. Проверь сам, что их 8.
Второй может встать на любую из 64 - 1 - 8 = 55 клеток.
Всего 16*55 = 880 вариантов.
Итого 244 + 480 + 944 + 236 + 912 + 880 = 3696 вариантов.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы поставить на шахматную доску черного и белого коня так, чтобы они не били друг друга, нужно разместить их на разных цветах клеток. Шахматная доска состоит из 8 строк и 8 столбцов, а каждая клетка может быть черной или белой.

Чтобы определить количество способов размещения коней, мы можем рассмотреть каждый конь отдельно. Первый конь может быть размещен на любой из 64 клеток, а второй конь - на любой из 32 оставшихся клеток.

Таким образом, общее количество способов размещения двух коней, чтобы они не били друг друга, составляет произведение двух чисел: 64 (возможные позиции первого коня) и 32 (возможные позиции второго коня).

Итого, всего существует 64 * 32 = 2048 способов разместить черного и белого коня на шахматной доске так, чтобы они не били друг друга.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос