
3sin x cos x = 1


Ответы на вопрос

3sin x cos x = 1
3/2 sin 2x=1
sin 2x=2/3
2x=(-1)^k * arcisn (2/3)+pi*k, k є Z
x=1/2*(-1)^k * arcsшn (2/3) +pi/2*k, k є Z



To solve the equation 3sin(x)cos(x) = 1, we can use trigonometric identities to simplify it and find the solutions. Let's go through the steps:
Start with the equation: 3sin(x)cos(x) = 1.
Apply the double angle formula for sine: sin(2x) = 2sin(x)cos(x).
Rewrite the equation using the double angle formula: 2sin(x)cos(x) = 1.
Divide both sides of the equation by 2: sin(x)cos(x) = 1/2.
Apply the double angle formula for cosine: cos(2x) = cos^2(x) - sin^2(x).
Substitute the identities: cos(2x) = cos^2(x) - (1 - cos^2(x)).
Simplify the equation: cos(2x) = 2cos^2(x) - 1.
Rewrite the equation: 2cos^2(x) - cos(2x) - 1 = 0.
Now, we have transformed the equation into a quadratic form. Let's solve it:
Set the equation equal to zero: 2cos^2(x) - cos(2x) - 1 = 0.
Let's introduce a substitution to simplify the equation. Let u = cos(x). Now, we have:
2u^2 - cos(2x) - 1 = 0.
- Use the double angle formula for cosine: cos(2x) = 2cos^2(x) - 1.
Substituting this into the equation, we get:
2u^2 - (2u^2 - 1) - 1 = 0.
- Simplify the equation: 2u^2 - 2u^2 + 1 - 1 - 1 = 0.
This simplifies to: 0 = 0.
The equation simplifies to 0 = 0, which is true for all values of u (or cos(x)). This means that the original equation 3sin(x)cos(x) = 1 is satisfied by all possible values of x.
In conclusion, the solution to the equation 3sin(x)cos(x) = 1 is x can be any real number.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili