
Решите функции 1)x+y=4 X^2-y^2=8 2)4x^2-xy=33 3x^2+xy=30


Ответы на вопрос





- x + y = 4 x^2 - y^2 = 8
We can rewrite the second equation as (x+y)(x-y) = 8. Since we know that x + y = 4, we can substitute 4 - x for y in the second equation and simplify:
x^2 - (4-x)^2 = 8 x^2 - 16 + 8x - x^2 = 8 8x = 24 x = 3
Substituting x = 3 into the first equation gives us y = 1. Therefore, the solution to the system of equations is x = 3 and y = 1.
- 4x^2 - xy = 33 3x^2 + xy = 30
Adding the two equations eliminates the xy term:
7x^2 = 63 x^2 = 9 x = 3 or x = -3
Substituting x = 3 into one of the original equations gives us:
4(3^2) - 3y = 33 y = -3
Therefore, one solution to the system of equations is x = 3 and y = -3. Substituting x = -3 gives us:
4(-3^2) - 3y = 33 y = -9
Therefore, the other solution to the system of equations is x = -3 and y = -9.
- 3x^2 + xy = 30 x^2 + xy = 10
Subtracting the second equation from the first eliminates the xy term:
2x^2 = 20 x^2 = 10 x = sqrt(10) or x = -sqrt(10)
Substituting x = sqrt(10) into one of the original equations gives us:
3(10) + sqrt(10)y = 30 y = (20 - 3sqrt(10))/sqrt(10)
Therefore, one solution to the system of equations is x = sqrt(10) and y = (20 - 3sqrt(10))/sqrt(10). Substituting x = -sqrt(10) gives us:
3(10) - sqrt(10)y = 30 y = (20 + 3sqrt(10))/sqrt(10)
Therefore, the other solution to the system of equations is x = -sqrt(10) and y = (20 + 3sqrt(10))/sqrt(10).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili