
Cos^2t-ctg^2t/sin^2t-tg^2t


Ответы на вопрос

(cos^2t-ctg^2t)/(sin^2t-tg^2t)
cos^2t-ctg^2t=cos^2t-cos^2t/sin^2t=(cos^2t*sin^2t-cos^2t)/sin^2t=
=(-cos^2t(1-sin^2t))/sin^2t=-cos^4t/sin^2t - числитель
sin^2t-tg^2t=sin^2t-sin^2t/cos^2t=(sin^2t*cos^2t-sin^2t)/cos^2t=
=(-sin^2t(1-cos^2t))/cos^2t=-sin^4t/cos^2t - знаменатель
Делим числитель на знаменатель
-cos^4t/sin^2t:(-sin^4t/cos^2t)=cos^6t/sin^6t=ctg^6t



=-cos^4t/sin²t :-sin^4t/cos²t=cos^4t/sin²t * cos²t/sin^4t=cos^6t/sin^6t=ctg^6t



To simplify the expression (cos^2t - ctg^2t) / (sin^2t - tg^2t), we can use trigonometric identities to rewrite the terms in a more convenient form.
Let's start by expressing cotangent (ctg) and tangent (tg) in terms of sine (sin) and cosine (cos):
ctg(t) = 1 / tan(t) = cos(t) / sin(t) tg(t) = sin(t) / cos(t)
Substituting these identities into the original expression, we have:
(cos^2t - ctg^2t) / (sin^2t - tg^2t) = (cos^2t - (cos(t)/sin(t))^2) / (sin^2t - (sin(t)/cos(t))^2)
Simplifying further, we can expand the squared terms:
= (cos^2t - (cos^2t/sin^2t)) / (sin^2t - (sin^2t/cos^2t))
To simplify the expression, we can find a common denominator for both terms:
= [(cos^2t * sin^2t) - cos^2t] / [(sin^2t * cos^2t) - sin^2t]
Factoring out a common factor in the numerator and denominator:
= [cos^2t * (sin^2t - 1)] / [sin^2t * (cos^2t - 1)]
Using the trigonometric identity sin^2t + cos^2t = 1, we can rewrite the expression further:
= [cos^2t * (-cos^2t)] / [(-sin^2t) * (-sin^2t)]
Simplifying the negative signs:
= [cos^2t * (-cos^2t)] / [sin^2t * sin^2t]
= - (cos^4t) / (sin^4t)
Therefore, the simplified expression is -cos^4t / sin^4t.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili