
Log0,5(4+x)/(x-1)>=2


Ответы на вопрос

основание логарифма а=0,5. 0<0,5<1
знак неравенства меняем:
+ - +
-----------(-4)-----------(1)----------------->x
x∈(-4;∞)∪(1;∞)
метод интервалов:
+ - +
----------[-17/3]-------------(1)--------------->x
x∈[-17/3;1)
/ / / / / / / / / / / / / / / /
------------[-17/3]------(-4)-----------(1)------------------>x
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x∈[-17/3;-4)



To solve the inequality log base 0.5 of (4+x)/(x-1) >= 2, we need to apply logarithmic properties and algebraic manipulation. Here's the step-by-step solution:
Step 1: Rewrite the inequality using exponential form. The logarithmic inequality can be transformed to its equivalent exponential form: 0.5^2 ≤ (4+x)/(x-1)
Step 2: Simplify the right side of the inequality: 0.25 ≤ (4+x)/(x-1)
Step 3: Multiply both sides of the inequality by (x-1) to eliminate the fraction. Note that we need to consider the sign of (x-1) and ensure we do not multiply by a negative number (which would require reversing the inequality): 0.25(x-1) ≤ 4+x
Step 4: Distribute 0.25 on the left side: 0.25x - 0.25 ≤ 4 + x
Step 5: Move x terms to one side of the inequality and constant terms to the other side: 0.25x - x ≤ 4 + 0.25
Step 6: Combine like terms: -0.75x ≤ 4.25
Step 7: Divide both sides by -0.75. Since we are dividing by a negative number, we must reverse the inequality sign: x ≥ 4.25 / -0.75
Step 8: Perform the division: x ≥ -5.67
Therefore, the solution to the inequality log base 0.5 of (4+x)/(x-1) >= 2 is x ≥ -5.67.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili