
Log1/3 (x2-6x+18)-2log1/3(x-4)<0


Ответы на вопрос

Ответ:
решение представлено на фото
Объяснение:




To solve the inequality, we'll apply logarithmic properties to simplify the expression first. Then we'll solve the resulting equation. Let's start by simplifying the expression step by step:
Applying the power rule of logarithms: log1/3((x^2 - 6x + 18)) - 2log1/3(x - 4) < 0
Using the rule log_b(x) - log_b(y) = log_b(x/y): log1/3((x^2 - 6x + 18)/(x - 4)^2) < 0
Rewriting the expression without logarithms: (x^2 - 6x + 18)/(x - 4)^2 < 1/3
Now that we have simplified the expression, we'll solve the equation:
Multiplying both sides of the inequality by (x - 4)^2 to eliminate the denominator: (x^2 - 6x + 18) < (x - 4)^2/3
Multiplying both sides by 3 to eliminate the fraction: 3(x^2 - 6x + 18) < (x - 4)^2
Expanding (x - 4)^2: 3(x^2 - 6x + 18) < x^2 - 8x + 16
Distributing 3 to the terms inside the parentheses: 3x^2 - 18x + 54 < x^2 - 8x + 16
Rearranging the equation by bringing all terms to one side: 2x^2 - 10x + 38 < 0
Now we have a quadratic inequality. To solve it, we can use various methods such as factoring, completing the square, or using the quadratic formula. However, upon inspecting the discriminant (b^2 - 4ac) of the quadratic equation (2x^2 - 10x + 38), we find that it is negative. This indicates that the quadratic has no real solutions.
Therefore, the inequality log1/3((x^2 - 6x + 18)) - 2log1/3(x - 4) < 0 has no solutions in the real number domain.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili