Вопрос задан 26.02.2021 в 05:26. Предмет Алгебра. Спрашивает Адамов Иван.

Решите уравнение 2x^2-4x-3=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сердцев Олег.
Найдем дискриминант D=-4^2-4*(-3)*2=40
x1/2=(4±sqrt(40))/2*2=(2±sqrt(10))/2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить уравнение 2x^2 - 4x - 3 = 0, можно воспользоваться квадратным уравнением или, если возможно, факторизацией. Давайте воспользуемся методом квадратного уравнения.

Уравнение имеет вид ax^2 + bx + c = 0, где a = 2, b = -4 и c = -3.

Формула для решения квадратного уравнения выглядит следующим образом:

x = (-b ± √(b^2 - 4ac)) / (2a)

Подставляя значения a, b и c в формулу, получаем:

x = (-(-4) ± √((-4)^2 - 4 * 2 * (-3))) / (2 * 2)

x = (4 ± √(16 + 24)) / 4

x = (4 ± √40) / 4

x = (4 ± 2√10) / 4

Теперь разделим числитель и знаменатель на 2:

x = (2 ± √10) / 2

Упростим дробь, деля числитель и знаменатель на 2:

x = 1 ± √10/2

Итак, уравнение 2x^2 - 4x - 3 = 0 имеет два решения:

x₁ = 1 + √10/2 x₂ = 1 - √10/2

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос