
6)х²=4х 7)n²=11n-10 4)19x-14-6x²=0 3)6x²+3=-7x 2)6x-1=9x² 1)14x-x²=48


Ответы на вопрос

1) x2(это тоже)-4x=0 ; x(x-4)=0 ; x=0 x=4
2)n2-11n+10=0 ; n(n-1)-10(n-1)=0 ; (n-1)(n-10) ; n=1 ; n=10
3)19x-14-6x(2-это в квадрате) ; 6x2-7x-12x+14=0 ; x(6x-7)-2(6x-7)=0 ; (6x-7)(x-2)=0 ; x=7/6 ; x=2



Let's solve each equation step by step:
- 14x - x² = 48
To solve this quadratic equation, we rearrange it to the standard quadratic form:
x² - 14x + 48 = 0
Now, we can factorize the quadratic equation:
(x - 6)(x - 8) = 0
Setting each factor equal to zero, we get:
x - 6 = 0 or x - 8 = 0
Solving for x in each case, we have:
x = 6 or x = 8
So the solutions to the equation are x = 6 and x = 8.
- 6x - 1 = 9x²
To solve this equation, we rearrange it to the standard quadratic form:
9x² - 6x + 1 = 0
This equation cannot be easily factored, so we can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 9, b = -6, and c = 1. Substituting these values into the formula:
x = (-(-6) ± √((-6)² - 4 * 9 * 1)) / (2 * 9)
Simplifying further:
x = (6 ± √(36 - 36)) / 18
x = (6 ± √0) / 18
Since the square root of 0 is 0, we have:
x = (6 ± 0) / 18
x = 6 / 18
Simplifying:
x = 1/3
So the solution to the equation is x = 1/3.
- 6x² + 3 = -7x
We rearrange the equation to the standard quadratic form:
6x² + 7x + 3 = 0
This equation cannot be easily factored, so we can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 6, b = 7, and c = 3. Substituting these values into the formula:
x = (-(7) ± √((7)² - 4 * 6 * 3)) / (2 * 6)
Simplifying further:
x = (-7 ± √(49 - 72)) / 12
x = (-7 ± √(-23)) / 12
Since the discriminant (b² - 4ac) is negative, the equation has no real solutions. The solutions would involve complex numbers.
- 19x - 14 - 6x² = 0
To solve this equation, we rearrange it to the standard quadratic form:
6x² - 19x + 14 = 0
Now, we can factorize the quadratic equation:
(2x - 7)(3x - 2) = 0
Setting each factor equal to zero, we get:
2x - 7 = 0 or 3x - 2 = 0
Solving for x in each case, we have:
2x = 7 or 3x = 2
x = 7/2 or x = 2/3
So the solutions to the equation are x = 7/2 and x = 2/3.
- n² = 11n - 10
To solve this equation, we rearrange it to the standard quadratic form:
n² - 11n + 10 =


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili