
F'(x)>0 если f(x)= cosx - x/2


Ответы на вопрос

F'(x)>0 если f(x)= cosx - x/2
F`(x) = - sunx - 1/2
- sunx - 1/2 > 0
- sinx > 1/2
sinx < - 1/2
- π - arcsin(-1/2) + 2πn < x < arcsin(-1/2) + 2πn, n ∈ Z
- π - (- π/6) + 2πn < x < - π/6 + 2πn, n ∈ Z
- 5π/6 + 2πn < x < - π/6 + 2πn, n ∈ Z



To find the derivative of the function f(x) = cos(x) - x/2, we can differentiate each term separately using the rules of differentiation. Let's calculate it step by step:
Differentiating cos(x) with respect to x: The derivative of cos(x) is -sin(x).
Differentiating -x/2 with respect to x: The derivative of -x/2 is -1/2.
Combining the derivatives: Since the derivative is a linear operator, we can add the derivatives of each term to find the derivative of the entire function: f'(x) = -sin(x) - 1/2.
Now, to determine when f'(x) > 0, we need to find the values of x for which -sin(x) - 1/2 > 0. Let's solve this inequality:
-sin(x) - 1/2 > 0
Adding sin(x) to both sides:
-sin(x) + sin(x) - 1/2 > sin(x)
-sin(x) + sin(x) - 1/2 > 0
-1/2 > sin(x)
Since the range of the sine function is [-1, 1], the inequality -1/2 > sin(x) is always true. Therefore, for any value of x, the derivative f'(x) = -sin(x) - 1/2 is less than zero (negative), not greater than zero (positive).
In conclusion, f'(x) is always negative for the function f(x) = cos(x) - x/2, indicating that the function is decreasing for all values of x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili