Вопрос задан 14.05.2019 в 17:16. Предмет Физика. Спрашивает Крыгин Алексей.

Имеется пружина с аномальной жесткостью так что смещается сила F пропорциальна кубу смещается x:

F=-kx^3, причем k=1MH/м^3. На такую пружину подвешен груз массой 1кг .Определите период малых колебаний груза относительно положения равновесия.Можно пожалуйста записать решение +ответ и объясните как решили если не трудно .заранее спасибо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Соломахина Ангелина.
Ну попробуем! Итак, запишем второй закон Ньютона для такой системы (ось направим вниз)

ma = mg-kx^3\\
mx'' = mg-kx^3

Пусть x = q+x0, где x0 = коренькубический(mg/k) и это константа, тогда

m(q+x_0)'' = mg-k(q+x_0)^3\\
q'' = mg-mg - 3kx_0&^2q-3kx_0q^2-kq^3\\
 mq''+3kx_0^2q = -3kx_0q^2-kq^3

Итак, для величины q, которая есть отклонение от положения равновесия мы получили ангармоническое уравнение колебаний. Вот теперь мы скажем, что если q мало, то можно пренебречь его старшими степенями в правой части уравнения. Тогда все становится просто

q''+\frac{3kx_0^2}{m}q = 0

Это обычное уравнение гармонических колебаний, множитель перед q - это квадрат угловой частоты, ну а период найдем элементарно (не забыв подставить x0)

\omega = \sqrt{\frac{3kx_0^2}{m}} = \\\\\sqrt{\frac{3k}{m}(\frac{mg}{k})^{2/3}} = \sqrt{3\sqrt[3]{\frac{{g^2k}}{m}}} = \sqrt[6]{\frac{27kg^2}{m}}

T = 2\pi\sqrt[6]{\frac{m}{27kg^2}}
0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос