
Стараясь равномерно грести перпендикулярно течению (v' const) пловец переплывает реку шириной 20
метров за 5 минут. Какова скорость течения реки u, если пловец проделал путь 50 метров

Ответы на вопрос




Problem Analysis
We are given that a swimmer crosses a river with a width of 20 meters in 5 minutes by swimming perpendicular to the current. We need to find the speed of the river current.Solution
Let's assume the speed of the swimmer relative to the water is v and the speed of the river current is u. Since the swimmer is swimming perpendicular to the current, the resultant velocity of the swimmer will be the vector sum of the swimmer's velocity and the river current velocity.The swimmer's velocity relative to the ground can be calculated using the Pythagorean theorem:
v^2 = (v' + u)^2 + v'^2
where v' is the speed of the swimmer relative to the water.
We are given that the swimmer crosses a distance of 50 meters in 5 minutes. We can use this information to find the value of v':
v' = distance / time = 50 meters / 5 minutes = 10 meters per minute
Now, we can substitute the value of v' into the equation above:
v^2 = (10 + u)^2 + 10^2
Simplifying the equation:
v^2 = 100 + 20u + u^2 + 100
v^2 = u^2 + 20u + 200
Since the swimmer is swimming perpendicular to the current, the resultant velocity v is equal to the speed of the swimmer relative to the ground. We are given that the swimmer crosses a distance of 50 meters, so we can write:
v = distance / time = 50 meters / 5 minutes = 10 meters per minute
Substituting this value into the equation:
10^2 = u^2 + 20u + 200
Simplifying the equation:
100 = u^2 + 20u + 200
Rearranging the equation:
u^2 + 20u + 100 = 0
This is a quadratic equation. We can solve it by factoring or using the quadratic formula. Let's use the quadratic formula:
u = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 1, b = 20, and c = 100. Substituting these values into the formula:
u = (-20 ± √(20^2 - 4 * 1 * 100)) / (2 * 1)
Simplifying the equation:
u = (-20 ± √(400 - 400)) / 2
u = (-20 ± √0) / 2
u = -20 / 2
u = -10
Since the speed of the river current cannot be negative, we discard the negative solution. Therefore, the speed of the river current is u = 10 meters per minute.
Answer
The speed of the river current is 10 meters per minute.

Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili