
М * мяч бросили вертикально верх со скоростью 10м в секунду. которую скорость он будет иметь через
1.5с? Чему равен пройденный путь и перемещения, какой максимальной высоты он достиг?

Ответы на вопрос

S=(g*t)/2= (10 м/c2*1,5)/2=15м.



Для решения этой задачи можно использовать уравнения движения тела под действием постоянного ускорения.
У нас есть начальная скорость (u = 10 м/с), время (t = 1.5 сек) и ускорение (g = 9.8 м/с^2, ускорение свободного падения).
1. Чтобы найти скорость через 1.5 секунды, используем формулу: v = u + gt, где v - конечная скорость, u - начальная скорость, g - ускорение, t - время. Подставляем известные значения: v = 10 + 9.8 * 1.5 = 10 + 14.7 = 24.7 м/с. Таким образом, через 1.5 секунды мяч будет иметь скорость 24.7 м/с вниз.
2. Чтобы найти пройденный путь, используем формулу: s = ut + (1/2)gt^2, где s - пройденный путь. Подставляем известные значения: s = 10 * 1.5 + (1/2) * 9.8 * (1.5)^2 = 15 + 1/2 * 9.8 * 2.25 = 15 + 11.025 = 26.025 м. Таким образом, мяч пройдет 26.025 метров.
3. Чтобы найти максимальную высоту, достигнутую мячом, используем формулу: h = (v^2 - u^2) / (2g), где h - максимальная высота. Подставляем известные значения: h = (24.7^2 - 10^2) / (2 * 9.8) = (610.09 - 100) / 19.6 = 510.09 / 19.6 = 26.02 м. Таким образом, мяч достигнет максимальной высоты 26.02 метра.



Для решения этой задачи можно использовать уравнения равноускоренного движения тела. Вертикальное движение тела под воздействием силы тяжести описывается уравнением:
\[ h(t) = h_0 + v_0t - \frac{1}{2}gt^2 \]
где: - \( h(t) \) - высота тела в момент времени \( t \), - \( h_0 \) - начальная высота броска (в данном случае 0, так как мяч бросили вверх), - \( v_0 \) - начальная вертикальная скорость (в данном случае 10 м/с вверх), - \( g \) - ускорение свободного падения (приблизительно 9.8 м/с²).
Для нахождения скорости мяча через 1.5 секунды можно использовать производную от уравнения \( h(t) \) по времени:
\[ v(t) = v_0 - gt \]
Теперь подставим \( t = 1.5 \) секунды в это уравнение, чтобы найти скорость через 1.5 секунды:
\[ v(1.5) = 10 - 9.8 \times 1.5 \]
\[ v(1.5) = 10 - 14.7 = -4.7 \, \text{м/с} \]
Отрицательный знак означает, что скорость направлена вниз.
Теперь, чтобы найти пройденный путь, нужно учесть, что мяч будет двигаться вверх и затем вниз. Пройденный путь можно найти, сложив модули возвышения и опускания:
\[ \text{Пройденный путь} = |h(1.5) - h(0)| \]
Подставим значения:
\[ \text{Пройденный путь} = |0 + 10 \times 1.5 - \frac{1}{2} \times 9.8 \times (1.5)^2| \]
\[ \text{Пройденный путь} = |15 - \frac{1}{2} \times 9.8 \times 2.25| \]
\[ \text{Пройденный путь} = |15 - 22.05| = 7.05 \, \text{м} \]
Таким образом, мяч пройдет 7.05 метров через 1.5 секунды.
Чтобы найти максимальную высоту, нужно найти момент времени, когда вертикальная скорость мяча станет равной нулю. Это произойдет в тот момент, когда мяч достигнет максимальной высоты. Установим \( v(t) = 0 \):
\[ 0 = 10 - 9.8t \]
\[ t = \frac{10}{9.8} \]
\[ t \approx 1.02 \, \text{сек} \]
Теперь найдем максимальную высоту, подставив \( t = 1.02 \) сек в уравнение \( h(t) \):
\[ h(1.02) = 10 \times 1.02 - \frac{1}{2} \times 9.8 \times (1.02)^2 \]
\[ h(1.02) = 10.2 - \frac{1}{2} \times 9.8 \times 1.0404 \]
\[ h(1.02) = 10.2 - 5.0958 \]
\[ h(1.02) \approx 5.1042 \, \text{м} \]
Таким образом, максимальная высота, которую достигнет мяч, составит примерно 5.1 метра.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili