
В алюминиевый калориметр, вкотором была водамассой 200 г при температуре 10 °с, положили медный
брусок массой 150 г,температура которого100°с. Определите температуруводы после установлениятеплового равновесия. Масса калориметра 100 г (желательно с пояснением)

Ответы на вопрос

Опять же зная закон о тепловом равновесии пренебрегаем калориметром.
m₁*Δt₁*c=m₂*Δt₂*c₂
0,2*(Θ-10)*4187=0,15*(100-Θ)*385
837,4*Θ+57,75Θ=8374+5775
14149=895,15*Θ
Θ=15,81






Calculation of Final Water Temperature
To determine the final temperature of the water after thermal equilibrium is reached, we can apply the principle of conservation of energy. In this case, the heat lost by the copper block will be equal to the heat gained by the water and the calorimeter.
Let's denote the specific heat capacity of water as Cw, the specific heat capacity of the calorimeter as Cc, the initial temperature of the water as T1, the final temperature of the water as T2, the mass of the water as m1, the mass of the copper block as m2, and the initial temperature of the copper block as T3.
The heat lost by the copper block can be calculated using the formula:
Q1 = m2 * Cc * (T3 - T2)
The heat gained by the water can be calculated using the formula:
Q2 = m1 * Cw * (T2 - T1)
Since the heat lost by the copper block is equal to the heat gained by the water and the calorimeter, we can set up the equation:
Q1 = Q2
Substituting the formulas for Q1 and Q2, we get:
m2 * Cc * (T3 - T2) = m1 * Cw * (T2 - T1)
Now we can solve this equation to find the final temperature of the water (T2).
Given: - Mass of water (m1) = 200 g - Initial temperature of water (T1) = 10 °C - Mass of copper block (m2) = 150 g - Initial temperature of copper block (T3) = 100 °C - Mass of calorimeter (Cc) = 100 g
Using the equation above, we can calculate the final temperature of the water (T2).
Calculation:
m2 * Cc * (T3 - T2) = m1 * Cw * (T2 - T1)
Substituting the given values:
150 g * 100 J/g°C * (100 °C - T2) = 200 g * 4.18 J/g°C * (T2 - 10 °C)
Simplifying the equation:
15000 J/°C * (100 °C - T2) = 836 J/°C * (T2 - 10 °C)
Expanding the equation:
1500000 J - 15000 J * T2 = 836 J * T2 - 8360 J
Rearranging the equation:
15000 J * T2 + 836 J * T2 = 1500000 J + 8360 J
Combining like terms:
15836 J * T2 = 1518360 J
Solving for T2:
T2 = 1518360 J / 15836 J ≈ 95.97 °C
Therefore, the final temperature of the water after thermal equilibrium is approximately 95.97 °C.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili