
Найти центростремительное ускорение точек колеса автомобиля, соприкасающихся с дорогой, если
автомобиль движется со скоростью 72 км/ч, а колесо вращается с частотой 8 Гц

Ответы на вопрос

v=2πγR
R=v/2πγ
а ц/с=v²/R=v²:v/2πγ=2πγv=6,28*8*20=1004,8 м/с²



Finding the Centripetal Acceleration of Points on a Car Wheel in Contact with the Road
To find the centripetal acceleration of points on a car wheel in contact with the road, we need to use the formula for centripetal acceleration:
Centripetal Acceleration (a) = (v^2) / r
Where: - v is the linear velocity of the car - r is the radius of the wheel
In this case, we are given that the car is moving with a speed of 72 km/h and the wheel is rotating at a frequency of 8 Hz.
Let's convert the given values to the appropriate units before calculating the centripetal acceleration.
1. Convert the car's speed from km/h to m/s: - 1 km/h = 0.2778 m/s - Therefore, the car's speed is 72 km/h * 0.2778 m/s = 20 m/s.
2. Calculate the linear velocity of a point on the wheel: - The linear velocity of a point on the wheel is equal to the circumference of the wheel multiplied by the frequency of rotation. - The formula for the circumference of a circle is C = 2πr, where r is the radius of the wheel. - Since the frequency of rotation is given as 8 Hz, the time period (T) is 1/8 seconds. - Therefore, the linear velocity (v) of a point on the wheel is v = (2πr) / T. - Substituting the given values, we have v = (2πr) / (1/8) = 16πr m/s.
Now, we can equate the linear velocity of the car to the linear velocity of a point on the wheel and solve for the radius (r) of the wheel.
3. Equate the linear velocities: - The linear velocity of the car is 20 m/s, and the linear velocity of a point on the wheel is 16πr m/s. - Therefore, 20 m/s = 16πr m/s. - Solving for r, we have r = (20 m/s) / (16π) = 1.26 m.
Now that we have the radius of the wheel, we can calculate the centripetal acceleration of points on the wheel in contact with the road.
4. Calculate the centripetal acceleration: - Using the formula for centripetal acceleration, a = (v^2) / r, where v is the linear velocity and r is the radius of the wheel. - Substituting the given values, we have a = (20 m/s)^2 / 1.26 m = 317.46 m/s^2.
Therefore, the centripetal acceleration of points on the car wheel in contact with the road is approximately 317.46 m/s^2.
Please note that this calculation assumes that the car is moving in a straight line and that the points on the wheel in contact with the road are not slipping or sliding.
Let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili