Вопрос задан 16.02.2019 в 00:15. Предмет Физика. Спрашивает Скворцова Ксюша.

Начальная скорость снаряда V0=400 м/с. Расстояние до цели 9,6 км. Под каким углом a к горизонту

следует произвести выстрел, чтобы попасть в цель? Сопротивление воздуха не учитывать,g= 10 м/с^2.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жалмаганбетова Мерей.
Дальность полета:
L = Vo²*sin(2α) / g

sin (2α) = g*L / Vo²
sin (2α) = 10*9600 / 400² = 0,6

2α ≈ 37°
α ≈ 19°


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать уравнение движения снаряда:

y = x * tan(a) - (g * x^2) / (2 * (V0 * cos(a))^2)

Где: y - высота цели (0, так как мы стремимся попасть в цель) x - расстояние до цели (9,6 км = 9600 м) a - угол к горизонту g - ускорение свободного падения (10 м/с^2) V0 - начальная скорость снаряда (400 м/с)

Решая уравнение для a, мы можем найти угол, под которым нужно произвести выстрел, чтобы попасть в цель.

tan(a) = (g * x) / (2 * (V0^2))

tan(a) = (10 * 9600) / (2 * (400^2)) tan(a) = 48000 / 320000 tan(a) = 0,15

a = arctan(0,15) a ≈ 8,53 градуса

Таким образом, чтобы попасть в цель, нужно произвести выстрел под углом около 8,53 градуса к горизонту.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос