
Вопрос задан 21.04.2018 в 11:54.
Предмет Физика.
Спрашивает Матвейкин Кирилл.
Невесомый блок укреплен на вершине двух наклонных плоскостей, составляющих с горизонтом углы а =
30° и β = 60°. Гири А и В массой 2 кг каждая соединены нитью, перекинутой через блок. Найти ускорение А, с которым движутся гири и силу натяжения нити Т. Считать нить невесомой и нерастяжимой трением пренебречь Полное разъяснения


Ответы на вопрос

Отвечает Дубняк Ксения.
Предположим, что груз В на плоскости под углом beta опускается вниз
так как трения нет и массы грузов одинаковы, то задача заметно упрощается
груз В
ma=mg*sin(beta)-T
груз А
ma=T-mg*sin(alpha)
**************
ma=mg*sin(beta)-T
ma=T-mg*sin(alpha)
*****************
a=g*(sin(beta)-sin(alpha))/2 = 10*(sin(pi/3)-sin(pi/6))/2 м/с^2 = 1,830127 м/с^2
T=m*g*(sin(beta)+sin(alpha))/2 = 2*10*(sin(pi/3)+sin(pi/6))/2 Н = 13,66025 Н


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili