
Снаряд массой 30 кг, летящий горизонтально со скоростью 300 м/с, попадает в вагонетку с песком
массой 1,2 т и застревает в песке.С какой скоростью будет двигаться вагонетка, если до попадания снаряда она двигалась со скоростью 2 м/с в направлении движения снаряда?

Ответы на вопрос

напишем закон сохранения импульса в проекции на ось, сонаправленную с векторами v и u, учитывая, что удар абсолютно неупругий:
mv + Mu = (m + M) U, где U - скорость снаряда и тележки после соударения
U = (mv + Mu)/(m + M)
U = (30*300+1200*2)/1230 ≈ 9.27 м/c



Problem Analysis
We are given the following information: - A projectile with a mass of 30 kg is flying horizontally with a velocity of 300 m/s. - The projectile hits a cart filled with sand, which has a mass of 1.2 tons (or 1200 kg). - The cart was initially moving with a velocity of 2 m/s in the same direction as the projectile.We need to determine the velocity of the cart after the projectile hits it.
Solution
To solve this problem, we can use the principle of conservation of momentum. According to this principle, the total momentum before the collision is equal to the total momentum after the collision.The momentum of an object is given by the product of its mass and velocity: momentum = mass × velocity.
Before the collision, the momentum of the projectile is momentum_projectile = mass_projectile × velocity_projectile.
The momentum of the cart before the collision is momentum_cart = mass_cart × velocity_cart.
After the collision, the projectile becomes embedded in the cart, so the combined mass of the cart and the projectile is mass_combined = mass_cart + mass_projectile.
The momentum of the combined system after the collision is momentum_combined = mass_combined × velocity_combined.
According to the conservation of momentum principle, we have:
momentum_projectile + momentum_cart = momentum_combined
Substituting the formulas for momentum, we get:
mass_projectile × velocity_projectile + mass_cart × velocity_cart = mass_combined × velocity_combined
We can rearrange this equation to solve for the velocity of the cart after the collision:
velocity_combined = (mass_projectile × velocity_projectile + mass_cart × velocity_cart) / mass_combined
Now we can substitute the given values into this equation to find the velocity of the cart after the collision.
Calculation
Given: - mass_projectile = 30 kg - velocity_projectile = 300 m/s - mass_cart = 1200 kg - velocity_cart = 2 m/sSubstituting these values into the equation, we get:
velocity_combined = (30 kg × 300 m/s + 1200 kg × 2 m/s) / (30 kg + 1200 kg)
Simplifying the equation, we have:
velocity_combined = (9000 kg·m/s + 2400 kg·m/s) / 1230 kg
velocity_combined = 11400 kg·m/s / 1230 kg
velocity_combined ≈ 9.27 m/s
Therefore, the velocity of the cart after the collision is approximately 9.27 m/s.
Answer
The velocity of the cart after the projectile hits it will be approximately 9.27 m/s.

Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili