Вопрос задан 03.11.2023 в 14:43. Предмет Физика. Спрашивает Леницкая Лера.

4. До какой глубины можно погрузиться в батискафе, способом выдержать давление 5 МПа 3. На какой

глубине давление на бетонную плиту не будет превышать 200 кПа. Плита находится в морской воде плотностью 1030 кг/м3 2. В бочке находится жидкость, которая оказывает давление на дно, равное 160 кПа. Определить какая жидкость находится в бочке, если уровень жидкости 20 м. 1. Какое давление испытывает подводная лодка Варшавянка по погружении на глубину 240 и 300 метров? ДАЮ 48 БАЛЛОВ!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Некрашевич Таня.

Ответ: 2323860Па; 3129500Па; 800кг/м³; 19,4м; 485,4м

Объяснение: 1. Давление на подводную лодку определяется следующим образом:

Давление в жидкости = pgh

p- плотность жидкости

h - глубина жидкости

1) P=240*1030*9,8=2422560 Па

Атмосферное давление = 101300 Па

Тогда общее давление = 2422560+101300=2323860 Па

2) Р=300*1030*9,8+101300=3129500 Па

2.Давление в жидкости = pgh

p- плотность жидкости

h - глубина жидкости

Отсюда ρ=P/gh=160000/(10*20)=800 кг/м³

По таблице жидкостей - это нефть, спирт или керосин.

3. Давление в жидкости = pgh

p- плотность жидкости

h - глубина жидкости

Отсюда h=P/ρg=200000/(1030*10)=19,4м

Глубина погружения бетонной плиты  не должна превышать 19,4м

4. Давление в жидкости = pgh

p- плотность жидкости

h - глубина жидкости

h=P/ρg=5000000/(1030*10)=485,4м

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Depth Limit of a Bathyscaphe and Pressure Endurance

The depth limit to which a bathyscaphe can descend and withstand pressure depends on various factors, including the design and materials used in its construction. However, it is important to note that the pressure at extreme depths in the ocean is immense and can reach up to 1,000 atmospheres (approximately 100 MPa or 15,000 psi).

To provide a specific answer to your question, I would need more information about the specific bathyscaphe in question. Different bathyscaphes have different depth limits and pressure endurance capabilities. However, it is worth mentioning that the deepest manned descent in a bathyscaphe was achieved by the Trieste in 1960, which reached the bottom of the Mariana Trench at a depth of approximately 10,916 meters (35,814 feet) [[1]].

Pressure on a Concrete Slab at a Certain Depth in Seawater

The pressure on a concrete slab at a certain depth in seawater can be calculated using the hydrostatic pressure formula. Hydrostatic pressure is directly proportional to the depth and the density of the fluid.

Given that the density of seawater is approximately 1030 kg/m³ and you want to find the depth at which the pressure on the concrete slab does not exceed 200 kPa, we can use the following formula:

Pressure = Density × Gravity × Depth

Where: - Pressure is the hydrostatic pressure in pascals (Pa) - Density is the density of the fluid in kg/m³ - Gravity is the acceleration due to gravity (approximately 9.8 m/s²) - Depth is the depth of the fluid in meters

To find the depth at which the pressure does not exceed 200 kPa (200,000 Pa), we can rearrange the formula as follows:

Depth = Pressure / (Density × Gravity)

Substituting the given values, we get:

Depth = 200,000 Pa / (1030 kg/m³ × 9.8 m/s²)

Calculating this, we find that the depth at which the pressure on the concrete slab does not exceed 200 kPa is approximately 19.42 meters.

Determining the Liquid in a Barrel Based on Pressure and Liquid Level

To determine the liquid in a barrel based on the pressure on the bottom and the liquid level, we can use the hydrostatic pressure formula mentioned earlier.

Given that the pressure on the bottom of the barrel is 160 kPa (160,000 Pa) and the liquid level is 20 meters, we can calculate the density of the liquid using the following formula:

Density = Pressure / (Gravity × Height)

Where: - Density is the density of the liquid in kg/m³ - Pressure is the hydrostatic pressure in pascals (Pa) - Gravity is the acceleration due to gravity (approximately 9.8 m/s²) - Height is the height of the liquid column in meters

Substituting the given values, we get:

Density = 160,000 Pa / (9.8 m/s² × 20 m)

Calculating this, we find that the density of the liquid in the barrel is approximately 816.33 kg/m³.

Unfortunately, without additional information, it is not possible to determine the specific liquid in the barrel. The density alone does not provide enough information to identify the liquid.

Pressure Experienced by a Varshavyanka Submarine at Depths of 240 and 300 Meters

The pressure experienced by a Varshavyanka submarine during a dive to depths of 240 and 300 meters can be calculated using the hydrostatic pressure formula mentioned earlier.

Given that the density of seawater is approximately 1030 kg/m³ and the acceleration due to gravity is approximately 9.8 m/s², we can calculate the pressure at each depth using the following formula:

Pressure = Density × Gravity × Depth

For a depth of 240 meters: Pressure = 1030 kg/m³ × 9.8 m/s² × 240 m

For a depth of 300 meters: Pressure = 1030 kg/m³ × 9.8 m/s² × 300 m

Calculating these values, we find that the pressure experienced by the Varshavyanka submarine at depths of 240 and 300 meters is approximately 2,404,800 Pa (2.4 MPa) and 3,006,000 Pa (3.0 MPa), respectively.

Please note that the values provided are approximate and may vary depending on factors such as temperature and salinity of the seawater.

I hope this information helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос