
Вопрос задан 26.10.2023 в 17:40.
Предмет Физика.
Спрашивает Толмачев Руслан.
тело брошено под углом 30 градусов к горизонту со скоростью 30 мс каково будет уравнение траектории
движения тела

Ответы на вопрос

Отвечает Шокорова Анна.
Первым делом заметим, что на тело на всём протяжении полёта действует единственное ускорение - g, направленное всегда вниз. Величину g примем по-школьному g = 10 м/с2. Других ускорений нет, т.к. больше нет сил, кроме силы тяжести. Следовательно, задача сводится к разложению ускорения g на составляющие, для чего необходимо как-то узнать радиус кривизны траектории в указанной точке.
Давай для начала выпишем скорости в проекциях:Vx = V * cos(a) = 30 * корень(3) / 2 = 15 * корень(3) = 25,98 м/с - горизонтальная скорость не меняется на всём протяжении полёта.
Vy = Vy0 - g*t = V * sin(a) - g*t = 30 * 0,5 - gt = 15 - 10*t м/с - вертикальная скорость меняется в течение полёта.
Теперь выпишем уравнение движения. Мне как-то привычнее использовать параметрическую форму, так проще.x = Vx * t = 25,98 * t y = Vy0 * t - g*t^2 / 2 = 15t - 5t^2 = (если угодно, то 5t*(3-t))По ходу, видим, что тело упадёт на землю (то есть у обнулится) при t=3 c, следовательно в интересующий нас момент времени t=1c тело ещё не долетело до высшей точки траектории.
И тут мы приходим на развилку. Если бы эта задача была задана у нас, то я не знаю как находить радиус кривизны, мы этого ещё не проходили. Поэтому запилил бы программу, которая посчитала бы мне две касательные к траектории в точках чуть-чуть левее и чуть-чуть правее t=1c, например, с дельтой 0,001 с, посчитал бы их нормали, нашёл точку пересечения нормалей, и так узнал бы радиус кривизны. Но мы с тобой пойдём другим путём - налево, потому что есть ощущение, что задачка из углублёнки, следовательно можно применить грязный хак из математики. Хак заключается в том, что существует алгебраическая формула для кривизны в точке. Назовём этот параметр буквой К. Формула такая:
К = |x' * y'' - y' * x'' | / [ (x')^2 + (y')^2 ] ^ (3/2).
Тут присутствуют первая и вторая производные. Что ж, выпишем их:
x = 25,98 * tx' = 25,98x'' = 0
y = 15t - 5t^2y' = 15 - 10ty'' = -10
Подставим значения этих производных при t=1 в магическую формулу, и получается так:К = | 25,98 * (-10) - (-5) * 0 | / [ 25,98^2 + (-5)^2 ] ^ 1,5 = 0,0140285 1/м
Лучше проверь вычисления за мной, с калькулятором я не очень дружу. Если всё верно, то радиус кривизны R = 1 / K.
R = 1 / 0,0140285 = 71,28346 м
Самое хитрое позади. Для определения центростремительного (видимо, это у тебя имеется в виду под словом "нормальное") ускорения нам нужно узнать скорость в точке t=1 с. Нет ничего проще, уравнения скорости у нас имеются.Vx = 25,98 м/сVy = 15 - 10 = 5 м/сV = корень ( Vx^2 + Vy^2 ) = 26,4575 м/с
а_норм = V^2 / R = 26,4575 ^ 2 / 71,28346 = 9,82 м/с2
Осталось последнее движение: определить а_танг как векторную разницу между g и только что найденным а_норм. Используем то обстоятельство, что нормальное и тангенциальное ускорения имеют между собой прямой угол, следовательно
а_танг = корень( g^2 - а_норм^2) = корень(100 - 9,82^2) = 1,89 м/с2
Давай для начала выпишем скорости в проекциях:Vx = V * cos(a) = 30 * корень(3) / 2 = 15 * корень(3) = 25,98 м/с - горизонтальная скорость не меняется на всём протяжении полёта.
Vy = Vy0 - g*t = V * sin(a) - g*t = 30 * 0,5 - gt = 15 - 10*t м/с - вертикальная скорость меняется в течение полёта.
Теперь выпишем уравнение движения. Мне как-то привычнее использовать параметрическую форму, так проще.x = Vx * t = 25,98 * t y = Vy0 * t - g*t^2 / 2 = 15t - 5t^2 = (если угодно, то 5t*(3-t))По ходу, видим, что тело упадёт на землю (то есть у обнулится) при t=3 c, следовательно в интересующий нас момент времени t=1c тело ещё не долетело до высшей точки траектории.
И тут мы приходим на развилку. Если бы эта задача была задана у нас, то я не знаю как находить радиус кривизны, мы этого ещё не проходили. Поэтому запилил бы программу, которая посчитала бы мне две касательные к траектории в точках чуть-чуть левее и чуть-чуть правее t=1c, например, с дельтой 0,001 с, посчитал бы их нормали, нашёл точку пересечения нормалей, и так узнал бы радиус кривизны. Но мы с тобой пойдём другим путём - налево, потому что есть ощущение, что задачка из углублёнки, следовательно можно применить грязный хак из математики. Хак заключается в том, что существует алгебраическая формула для кривизны в точке. Назовём этот параметр буквой К. Формула такая:
К = |x' * y'' - y' * x'' | / [ (x')^2 + (y')^2 ] ^ (3/2).
Тут присутствуют первая и вторая производные. Что ж, выпишем их:
x = 25,98 * tx' = 25,98x'' = 0
y = 15t - 5t^2y' = 15 - 10ty'' = -10
Подставим значения этих производных при t=1 в магическую формулу, и получается так:К = | 25,98 * (-10) - (-5) * 0 | / [ 25,98^2 + (-5)^2 ] ^ 1,5 = 0,0140285 1/м
Лучше проверь вычисления за мной, с калькулятором я не очень дружу. Если всё верно, то радиус кривизны R = 1 / K.
R = 1 / 0,0140285 = 71,28346 м
Самое хитрое позади. Для определения центростремительного (видимо, это у тебя имеется в виду под словом "нормальное") ускорения нам нужно узнать скорость в точке t=1 с. Нет ничего проще, уравнения скорости у нас имеются.Vx = 25,98 м/сVy = 15 - 10 = 5 м/сV = корень ( Vx^2 + Vy^2 ) = 26,4575 м/с
а_норм = V^2 / R = 26,4575 ^ 2 / 71,28346 = 9,82 м/с2
Осталось последнее движение: определить а_танг как векторную разницу между g и только что найденным а_норм. Используем то обстоятельство, что нормальное и тангенциальное ускорения имеют между собой прямой угол, следовательно
а_танг = корень( g^2 - а_норм^2) = корень(100 - 9,82^2) = 1,89 м/с2



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Уравнение траектории движения тела, брошенного под углом к горизонту, можно записать в следующем виде:
где:
- - вертикальная координата тела,
- - горизонтальная координата тела,
- - угол броска (в радианах),
- - ускорение свободного падения (примерно 9.81 м/с² на поверхности Земли),
- - начальная скорость броска.
В вашем случае:
- Угол броска равен 30 градусам, что в радианах можно записать как .
- Начальная скорость равна 30 м/с.
Подставив эти значения в уравнение, получим уравнение траектории движения тела:
Это уравнение представляет траекторию движения тела, брошенного под углом 30 градусов к горизонту со скоростью 30 м/с.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili