Вопрос задан 24.09.2023 в 10:23. Предмет Физика. Спрашивает Жигульский Вадим.

Ожеледь призвела до зменшення коефіцієнта тертя шин об дорогу від 0,5 до 0,07. У скільки разів

треба зменшити швидкість руху автомобіля, щоб його гальмівний шлях залишився незмінним?​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Растовская Дарья.

Ответ:

у 2,6

Объяснение:

хз как решила просто знаю и всё

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження відповіді на це питання, ми можемо використовувати рівняння для гальмування автомобіля на дорозі:

D=V22μg,D = \frac{{V^2}}{{2μg}},

де:

  • DD - гальмівний шлях,
  • VV - початкова швидкість автомобіля,
  • μμ - коефіцієнт тертя між шинами автомобіля та дорогою,
  • gg - прискорення вільного падіння (приблизно 9,8 м/с²).

Спочатку ми можемо визначити гальмівний шлях D1D_1 при початковому коефіцієнті тертя μ1=0,5μ_1 = 0,5:

D1=V220,59,8=V29,8.D_1 = \frac{{V^2}}{{2 \cdot 0,5 \cdot 9,8}} = \frac{{V^2}}{{9,8}}.

Потім ми можемо визначити гальмівний шлях D2D_2 при новому коефіцієнті тертя μ2=0,07μ_2 = 0,07:

D2=V220,079,8=V21,372.D_2 = \frac{{V^2}}{{2 \cdot 0,07 \cdot 9,8}} = \frac{{V^2}}{{1,372}}.

Тепер нам потрібно знайти швидкість V2V_2, при якій гальмівний шлях D2D_2 залишиться незмінним:

D1=D2D_1 = D_2

V29,8=V221,372.\frac{{V^2}}{{9,8}} = \frac{{V_2^2}}{{1,372}}.

Тепер ми можемо вирішити це рівняння відносно V2V_2:

V29,8=V221,372\frac{{V^2}}{{9,8}} = \frac{{V_2^2}}{{1,372}}

V22=V29,81,372V_2^2 = \frac{{V^2}}{{9,8}} \cdot 1,372

V22=V21,3729,8V_2^2 = \frac{{V^2 \cdot 1,372}}{{9,8}}

V2=V21,3729,8.V_2 = \sqrt{\frac{{V^2 \cdot 1,372}}{{9,8}}}.

Тепер ми можемо визначити, в скільки разів треба зменшити швидкість руху автомобіля, щоб гальмівний шлях залишився незмінним:

VV2=VV21,3729,8=9,81,37213,29.\frac{{V}}{{V_2}} = \frac{{V}}{{\sqrt{\frac{{V^2 \cdot 1,372}}{{9,8}}}}} = \frac{{\sqrt{{\frac{{9,8}}{{1,372}}}}}}{{1}} \approx 3,29.

Отже, щоб гальмівний шлях залишився незмінним при зменшенні коефіцієнта тертя шин з 0,5 до 0,07, потрібно зменшити швидкість руху автомобіля приблизно в 3,29 рази.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос