Вопрос задан 16.08.2023 в 15:55. Предмет Физика. Спрашивает Летун Александр.

Тело массой m=500г увеличило свою скорость от v1=19м\с до v2=27м\с. Определите работу А, которая

при этом была совершена
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Долгопятов Андрей.
A=ΔEk; Ek=mV²/2;
A=mV₁²/2-mV₀²/2=m(V₁²-V₀²)/2
A=0.5*(27²-19²)/2=92 Дж
Ответ: A=92 Дж
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения работы, которая была совершена над телом, мы можем использовать формулу для кинетической энергии:

K=12mv2K = \frac{1}{2} m v^2,

где KK - кинетическая энергия, mm - масса тела, vv - скорость тела.

Изначально у нас есть m=500г=0.5кгm = 500 \, \text{г} = 0.5 \, \text{кг}, v1=19м/сv_1 = 19 \, \text{м/с}, и v2=27м/сv_2 = 27 \, \text{м/с}.

Сначала найдем кинетическую энергию K1K_1 при начальной скорости v1v_1:

K1=12mv12K_1 = \frac{1}{2} m v_1^2

K1=120.5кг(19м/с)2K_1 = \frac{1}{2} \cdot 0.5 \, \text{кг} \cdot (19 \, \text{м/с})^2

K1=90.25ДжK_1 = 90.25 \, \text{Дж}.

Затем найдем кинетическую энергию K2K_2 при конечной скорости v2v_2:

K2=12mv22K_2 = \frac{1}{2} m v_2^2

K2=120.5кг(27м/с)2K_2 = \frac{1}{2} \cdot 0.5 \, \text{кг} \cdot (27 \, \text{м/с})^2

K2=182.25ДжK_2 = 182.25 \, \text{Дж}.

Работа AA, совершенная над телом, равна изменению кинетической энергии:

A=K2K1A = K_2 - K_1

A=182.25Дж90.25ДжA = 182.25 \, \text{Дж} - 90.25 \, \text{Дж}

A=92ДжA = 92 \, \text{Дж}.

Итак, работа AA, которая была совершена над телом, равна 92Дж92 \, \text{Дж}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос