Вопрос задан 07.08.2023 в 23:41. Предмет Физика. Спрашивает Сайфутдинова Алина.

сила гравитационного притяжения действующая между Землей и луной составляет 2*10^20Н масса земли

6*10^24кг масса луны 7,2*10^22кг опредилите расстояние от земли до луны
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ботвинко Владислав.
F=G*(M1*M2)/r^2
r^2=(6,67*10^-11*6*10^24*7,2*10^22)/2*10^20=6,67*3*7,2*10^15=144*10^15
r=37,9*10^7м
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения расстояния между Землей и Луной можно использовать закон всемирного гравитационного притяжения, который формулируется следующим образом:

F = G * (m1 * m2) / r^2,

где: F - сила гравитационного притяжения, G - гравитационная постоянная (приближенное значение: 6.67430 × 10^-11 м^3 кг^-1 с^-2), m1 - масса первого объекта (Земли), m2 - масса второго объекта (Луны), r - расстояние между центрами масс объектов.

Мы знаем, что F = 2 * 10^20 Н, m1 = 6 * 10^24 кг и m2 = 7.2 * 10^22 кг. Подставляя это в уравнение, получим:

2 * 10^20 = (6.67430 × 10^-11) * (6 * 10^24) * (7.2 * 10^22) / r^2.

Теперь решим уравнение относительно r^2:

r^2 = (6.67430 × 10^-11) * (6 * 10^24) * (7.2 * 10^22) / (2 * 10^20).

Вычислив это выражение, получим:

r^2 ≈ 3.862 * 10^8 м^2.

Теперь извлекаем квадратный корень, чтобы найти расстояние r:

r ≈ √(3.862 * 10^8) ≈ 196,467 км.

Итак, расстояние между Землей и Луной составляет приблизительно 196,467 км.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос