
Самое быстрое животное – гепард; в течение одной минуты он способен развивать скорость 112 км/ч.
Мастер спорта пробегает стометровку со скоростью 10 м/с. На какое расстояние он отстал бы от гепарда в забеге на 100 м? Автомобиль, двигаясь со скоростью 30 км/ч, проехал половину пути к месту назначения за 2 часа. С какой скоростью он должен продолжить движение, чтобы достичь цели и вернуться назад за то же время? Построить графики пути и скорости. Помогите пожалуйста срочно решить эти задания до завтра

Ответы на вопрос

Ответ:
на 2 заданий все не до конца заданы




The Sprinter and the Cheetah
To answer the first question, let's calculate the distance the athlete would be behind the cheetah in a 100-meter race.
The cheetah can reach a speed of 112 km/h, which is equivalent to 31.11 m/s. The sprinter, on the other hand, runs at a speed of 10 m/s.
To find out how long it takes for the cheetah to cover 100 meters, we can use the formula:
time = distance / speed
For the cheetah: time = 100 m / 31.11 m/s = 3.21 seconds
Now, let's calculate how far the sprinter would be behind the cheetah after 3.21 seconds.
The sprinter's distance covered can be calculated using the formula:
distance = speed x time
distance = 10 m/s x 3.21 s = 32.1 meters
Therefore, the sprinter would be approximately 32.1 meters behind the cheetah in a 100-meter race.
The Car's Journey
For the second question, let's determine the speed the car needs to maintain in order to return to the starting point in the same amount of time it took to reach the halfway point.
The car travels at a speed of 30 km/h and covers half the distance to the destination in 2 hours.
To find the total distance to the destination, we can multiply the speed by the time:
distance = speed x time = 30 km/h x 2 h = 60 km
Since the car has already covered half the distance, the remaining distance is 60 km - 30 km = 30 km.
To calculate the time it takes for the car to return to the starting point, we can use the formula:
time = distance / speed
time = 30 km / speed
Since we want the car to return in the same amount of time it took to reach the halfway point (2 hours), we can set up the equation:
2 hours = 30 km / speed
To solve for the speed, we can rearrange the equation:
speed = 30 km / 2 hours = 15 km/h
Therefore, the car needs to maintain a speed of 15 km/h in order to return to the starting point in the same amount of time it took to reach the halfway point.
Graphs of Distance and Speed
To visualize the journey of the car, we can create graphs of distance and speed over time.
Here is a graph showing the distance covered by the car over time:
``` | . | . | . | . | . | . | . |_____________________________________ 0 1 2 3 4 5 6 7 8 9 10 (time in hours) ```
The graph starts at the origin (0,0) and shows the distance increasing linearly over time until it reaches 30 km at 2 hours.
Here is a graph showing the speed of the car over time:
``` | . | . | . | . | . | . | . |_____________________________________ 0 1 2 3 4 5 6 7 8 9 10 (time in hours) ```
The graph shows a constant speed of 30 km/h throughout the journey.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili