Вопрос задан 15.06.2023 в 07:57. Предмет Физика. Спрашивает Гусейнов Фарид.

Расстояние между двумя населенными пунктами А и Б 10 км. Из пункта А в некоторый момент выезжает

грузовой автомобиль со скоростью 36 км/ч, В тот же момент времени от пункта Б отъезжает легковой автомобиль навстречу грузовому со скоростью 54 км/ч. В процессе движения скорость грузового автомобиля равномерно уменьшалась с ускорением 0,02 м/с2 , а легкового – равномерно увеличивалась с тем же ускорением 0,02 м/с2 . Определите время от начала движения до момента встречи, а также расстояние от пункта Б до места их встречи.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кучишин Софія.

Ответ:

См фото

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the following information: - The distance between two towns, A and B, is 10 km. - A truck starts from town A with a speed of 36 km/h. - At the same time, a car starts from town B towards the truck with a speed of 54 km/h. - The speed of the truck decreases uniformly with an acceleration of 0.02 m/s^2. - The speed of the car increases uniformly with the same acceleration of 0.02 m/s^2.

We need to determine the time it takes for the truck and the car to meet, as well as the distance from town B to the meeting point.

Solution

Let's solve this problem step by step.

Step 1: Convert the given speeds to m/s. - The speed of the truck is 36 km/h, which is equivalent to 10 m/s. - The speed of the car is 54 km/h, which is equivalent to 15 m/s.

Step 2: Determine the time it takes for the truck and the car to meet. - Let's assume that the time taken for the truck and the car to meet is t seconds. - During this time, the truck will travel a distance of 10 - 10t meters (since its speed is decreasing). - The car will travel a distance of 15t meters (since its speed is increasing). - At the meeting point, the sum of the distances traveled by the truck and the car should be equal to 10 km (or 10,000 meters). - Therefore, we can write the equation: 10 - 10t + 15t = 10,000. - Simplifying the equation, we get: 5t = 9,990. - Solving for t, we find: t = 1,998 seconds.

Step 3: Determine the distance from town B to the meeting point. - The distance from town B to the meeting point is equal to the distance traveled by the car during the time t. - Substituting the value of t, we find: distance = 15 * 1,998 = 29,970 meters.

Answer

The time it takes for the truck and the car to meet is 1,998 seconds, and the distance from town B to the meeting point is 29,970 meters.

Please note that the sources provided do not contain relevant information for this specific problem.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос