
а) 2sinx+ √ 2=0. б) sin3XcosX + cos3XsinX=0 в) cos6x = cos4x P.s. Я знаю что это элементарно, но
правильно оформить и решить не могу....

Ответы на вопрос

a) 2sin(x) + √2 = 0
To solve the equation 2sin(x) + √2 = 0, we need to isolate the variable sin(x). Here's how we can do it:
1. Subtract √2 from both sides of the equation: 2sin(x) = -√2
2. Divide both sides of the equation by 2: sin(x) = -√2/2
Now, we need to find the values of x that satisfy this equation. To do that, we can use the inverse sine function (also known as arcsin or sin^-1) to find the angle whose sine is equal to -√2/2.
Using a calculator or a trigonometric table, we find that the angle whose sine is -√2/2 is -π/4 or -45 degrees. However, keep in mind that the sine function is periodic, so there are infinitely many solutions to this equation.
The general solution for sin(x) = -√2/2 is: x = -π/4 + 2πn, where n is an integer.
This means that any angle that is -π/4 radians (or -45 degrees) plus a multiple of 2π radians (or 360 degrees) will satisfy the equation.
b) sin(3x)cos(x) + cos(3x)sin(x) = 0
To solve the equation sin(3x)cos(x) + cos(3x)sin(x) = 0, we can use the trigonometric identity for the sine of the sum of two angles:
sin(A + B) = sin(A)cos(B) + cos(A)sin(B)
By comparing the given equation with the trigonometric identity, we can see that A = 3x and B = x. Therefore, we have:
sin(3x + x) = 0
Simplifying the equation, we get:
sin(4x) = 0
To find the values of x that satisfy this equation, we need to find the angles whose sine is equal to 0. The sine function is equal to 0 at multiples of π (or 180 degrees). Therefore, the solutions to this equation are:
4x = nπ, where n is an integer.
Dividing both sides of the equation by 4, we get:
x = nπ/4, where n is an integer.
This means that any angle that is a multiple of π/4 radians (or 45 degrees) will satisfy the equation.
c) cos(6x) = cos(4x)
To solve the equation cos(6x) = cos(4x), we can use the cosine of the difference of two angles identity:
cos(A - B) = cos(A)cos(B) + sin(A)sin(B)
By comparing the given equation with the trigonometric identity, we can see that A = 6x and B = 4x. Therefore, we have:
cos(6x - 4x) = cos(6x)cos(4x) + sin(6x)sin(4x)
Simplifying the equation, we get:
cos(2x) = cos(6x)cos(4x) + sin(6x)sin(4x)
Since the cosine function is an even function, we can rewrite the equation as:
cos(2x) = cos(6x)cos(4x) - sin(6x)sin(4x)
Now, we can use the cosine of the sum of two angles identity:
cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
By comparing the equation with the trigonometric identity, we can see that A = 2x and B = 6x - 4x. Therefore, we have:
cos(2x + 2x) = cos(2x)cos(6x - 4x) - sin(2x)sin(6x - 4x)
Simplifying the equation, we get:
cos(4x) = cos(2x)cos(2x) - sin(2x)sin(2x)
Using the double-angle identity for cosine:
cos(4x) = cos^2(2x) - sin^2(2x)
Now, we can substitute cos^2(2x) with 1 - sin^2(2x) (using the Pythagorean identity for sine and cosine):
cos(4x) = 1 - sin^2(2x) - sin^2(2x)
Simplifying the equation, we get:
cos(4x) = 1 - 2sin^2(2x)
Rearranging the equation, we have:
2sin^2(2x) + cos(4x) - 1 = 0
Unfortunately, this equation cannot be easily solved algebraically. To find the solutions, we would need to use numerical methods or a graphing calculator.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili