Вопрос задан 02.09.2020 в 11:50. Предмет Математика. Спрашивает Красиков Даня.

а) 2sinx+ √ 2=0. б) sin3XcosX + cos3XsinX=0 в) cos6x = cos4x P.s. Я знаю что это элементарно, но

правильно оформить и решить не могу....
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

a) 2sin(x) + √2 = 0

To solve the equation 2sin(x) + √2 = 0, we need to isolate the variable sin(x). Here's how we can do it:

1. Subtract √2 from both sides of the equation: 2sin(x) = -√2

2. Divide both sides of the equation by 2: sin(x) = -√2/2

Now, we need to find the values of x that satisfy this equation. To do that, we can use the inverse sine function (also known as arcsin or sin^-1) to find the angle whose sine is equal to -√2/2.

Using a calculator or a trigonometric table, we find that the angle whose sine is -√2/2 is -π/4 or -45 degrees. However, keep in mind that the sine function is periodic, so there are infinitely many solutions to this equation.

The general solution for sin(x) = -√2/2 is: x = -π/4 + 2πn, where n is an integer.

This means that any angle that is -π/4 radians (or -45 degrees) plus a multiple of 2π radians (or 360 degrees) will satisfy the equation.

b) sin(3x)cos(x) + cos(3x)sin(x) = 0

To solve the equation sin(3x)cos(x) + cos(3x)sin(x) = 0, we can use the trigonometric identity for the sine of the sum of two angles:

sin(A + B) = sin(A)cos(B) + cos(A)sin(B)

By comparing the given equation with the trigonometric identity, we can see that A = 3x and B = x. Therefore, we have:

sin(3x + x) = 0

Simplifying the equation, we get:

sin(4x) = 0

To find the values of x that satisfy this equation, we need to find the angles whose sine is equal to 0. The sine function is equal to 0 at multiples of π (or 180 degrees). Therefore, the solutions to this equation are:

4x = nπ, where n is an integer.

Dividing both sides of the equation by 4, we get:

x = nπ/4, where n is an integer.

This means that any angle that is a multiple of π/4 radians (or 45 degrees) will satisfy the equation.

c) cos(6x) = cos(4x)

To solve the equation cos(6x) = cos(4x), we can use the cosine of the difference of two angles identity:

cos(A - B) = cos(A)cos(B) + sin(A)sin(B)

By comparing the given equation with the trigonometric identity, we can see that A = 6x and B = 4x. Therefore, we have:

cos(6x - 4x) = cos(6x)cos(4x) + sin(6x)sin(4x)

Simplifying the equation, we get:

cos(2x) = cos(6x)cos(4x) + sin(6x)sin(4x)

Since the cosine function is an even function, we can rewrite the equation as:

cos(2x) = cos(6x)cos(4x) - sin(6x)sin(4x)

Now, we can use the cosine of the sum of two angles identity:

cos(A + B) = cos(A)cos(B) - sin(A)sin(B)

By comparing the equation with the trigonometric identity, we can see that A = 2x and B = 6x - 4x. Therefore, we have:

cos(2x + 2x) = cos(2x)cos(6x - 4x) - sin(2x)sin(6x - 4x)

Simplifying the equation, we get:

cos(4x) = cos(2x)cos(2x) - sin(2x)sin(2x)

Using the double-angle identity for cosine:

cos(4x) = cos^2(2x) - sin^2(2x)

Now, we can substitute cos^2(2x) with 1 - sin^2(2x) (using the Pythagorean identity for sine and cosine):

cos(4x) = 1 - sin^2(2x) - sin^2(2x)

Simplifying the equation, we get:

cos(4x) = 1 - 2sin^2(2x)

Rearranging the equation, we have:

2sin^2(2x) + cos(4x) - 1 = 0

Unfortunately, this equation cannot be easily solved algebraically. To find the solutions, we would need to use numerical methods or a graphing calculator.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос