Вопрос задан 08.06.2018 в 17:06. Предмет Математика. Спрашивает Лаптева Аня.

В четырехугольнике ABCD BO=OD, угол ADB = угол CDB. Докажите что четырехугольник ABCD -

параллелограмм
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шлыкова Валерия.

Пусть ABCD – данный четырехугольник. По условию AB\\CD мы вполне можем провести 2 диоганали так что у нас выидет AO = OC , BO = OD . Так как углы ( AOB ) и ( COD ) равны как вертикальные, то по теореме 4.1 треугольник AOB равен треугольнику COD , и, следовательно, углы ( OAB ) и ( OCD ) равны. Эти углы являются внутренними накрест лежащими при прямых ( AB ) и ( CD ) и секущей ( AC ) и по теореме 3.2 прямые ( AB ) и ( CD ) параллельны. Аналогично из равенства треугольников AOD и COB следует равенство углов ( OAD ) и ( OCB ) и по теореме 3.2 – параллельность прямых ( AD ) и ( BC ). Из полученных результатов следует, что четырехугольник ABCD – параллелограмм. Теорема доказана

Ну вот как то так.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос