Вопрос задан 16.01.2020 в 17:06. Предмет Математика. Спрашивает Гладилина Татьяна.

система уравнения как решать х-у=15 х-5у=7

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Агабабян Ксюша.
{х-у = 15
{х-5у=7
Из 1 уравнения вычитаем 2 уравнение, получаем:
х-х-у+5у =15-7
-у +5у = 8
4у = 8
у =2
Подставляем значение у  во 2 уравнение:
х -5(2) = 7
х = 7 +10
х = 17
Ответ: х = 17; у = 2










0 0
Отвечает Иванова Вика.
Решение во вложении:
---------------------------------
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения системы уравнений \(x - y = 15\) и \(x - 5y = 7\), можно воспользоваться различными методами, такими как метод подстановки, метод сложения или вычитания уравнений, а также метод определителей. Рассмотрим метод сложения или вычитания.

Итак, у нас есть система уравнений:

1. \(x - y = 15\) 2. \(x - 5y = 7\)

Давайте вычтем уравнение (1) из уравнения (2), чтобы избавиться от переменной \(x\):

\[(x - 5y) - (x - y) = 7 - 15\]

Раскроем скобки и упростим:

\[x - 5y - x + y = -8\]

Теперь сложим или вычтем подобные члены:

\[-4y = -8\]

Разделим обе стороны на -4, чтобы выразить \(y\):

\[y = 2\]

Теперь, когда мы знаем \(y\), можем подставить его значение в одно из уравнений для нахождения \(x\). Давайте подставим \(y = 2\) в уравнение (1):

\[x - 2 = 15\]

Теперь прибавим 2 к обеим сторонам уравнения:

\[x = 17\]

Таким образом, решение системы уравнений \(x - y = 15\) и \(x - 5y = 7\) составляет \(x = 17\) и \(y = 2\).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос