
Вопрос задан 09.05.2019 в 03:16.
Предмет Математика.
Спрашивает Микерова Валерия.
Помогите решить 9 класс х²-8х+15=0


Ответы на вопрос

Отвечает Котов Максим.
х²-8х+15=0
D=(-8)²-4·15=64-60=4=2²
x₁=(8-2)/2=3 или х₂=(8+2)/2=5
Ответ. х=3 ; х=5
D=(-8)²-4·15=64-60=4=2²
x₁=(8-2)/2=3 или х₂=(8+2)/2=5
Ответ. х=3 ; х=5



Отвечает Воронин Ярослав.
По теореме Виета
Х1+Х2 равен 8 Х1 равен з
Х1 умножитьХ2 равен 15 Х2 равен 5
Я в 8 классе и мы это проходим уже



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для того чтобы решить квадратное уравнение вида х² - 8х + 15 = 0, мы можем использовать метод факторизации, метод завершения квадрата или квадратное уравнение. Давайте рассмотрим каждый из этих методов подробнее.
Метод факторизации:
1. Разложим константу 15 на все возможные пары таким образом, чтобы их сумма была равна коэффициенту перед х (в данном случае -8). Пары, которые удовлетворяют этому условию: (-3, -5), (-1, -15). 2. Запишем уравнение в виде двух скобок, используя найденные пары: (х - 3)(х - 5) = 0. 3. Решим уравнение, приравняв каждую скобку к нулю: х - 3 = 0 или х - 5 = 0. 4. Решим полученные уравнения: х = 3 или х = 5. Получили два корня уравнения: х₁ = 3 и х₂ = 5.Метод завершения квадрата:
1. Перенесем константу 15 на правую сторону уравнения, чтобы получить уравнение вида х² - 8х = -15. 2. Добавим и вычтем половину коэффициента перед х, возведенного в квадрат. В данном случае это будет (8/2)² = 16. Получим: х² - 8х + 16 - 16 = -15. 3. Приведем левую часть к виду полного квадрата: (х - 4)² - 16 = -15. 4. Упростим уравнение: (х - 4)² = 1. 5. Избавимся от квадрата, взяв квадратный корень от обеих сторон уравнения: х - 4 = ±√1. 6. Решим полученные уравнения: х - 4 = 1 или х - 4 = -1. Получили два корня уравнения: х₁ = 5 и х₂ = 3.Формула квадратных корней:
Квадратное уравнение общего вида ax² + bx + c = 0 может быть решено с использованием формулы квадратных корней: х = (-b ± √(b² - 4ac)) / 2a.В данном случае у нас есть уравнение х² - 8х + 15 = 0, где a = 1, b = -8 и c = 15. Подставим значения в формулу и решим: х = (-(-8) ± √((-8)² - 4 * 1 * 15)) / (2 * 1). х = (8 ± √(64 - 60)) / 2. х = (8 ± √4) / 2. х = (8 ± 2) / 2. Таким образом, получаем два корня: х₁ = (8 + 2) / 2 = 5 и х₂ = (8 - 2) / 2 = 3.
Итак, решение квадратного уравнения х² - 8х + 15 = 0 состоит из двух корней: х₁ = 5 и х₂ = 3.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili