
Вопрос задан 07.05.2019 в 13:12.
Предмет Математика.
Спрашивает Романова Ульяна.
Найдите НОК числа а и если а2*2*3*5*5 б2*3*3*35


Ответы на вопрос

Отвечает Тасболат Нурасыл.
2*2*3*5*5=300
2*3*3*35=630
2*3*3*35=630



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
НОК (наименьшее общее кратное) двух чисел - это наименьшее положительное число, которое делится без остатка на оба исходных числа.
Чтобы найти НОК чисел а и б, нужно разложить их на простые множители и выбрать каждый простой множитель с максимальной степенью, которая встречается в обоих числах.
Дано: а = 2 * 2 * 3 * 5 * 5 б = 2 * 3 * 3 * 35
Разложим каждое число на простые множители: а = 2^2 * 3^1 * 5^2 б = 2^1 * 3^2 * 5^0 * 7^1
Теперь выберем каждый простой множитель с максимальной степенью, которая встречается в обоих числах: 2^2 * 3^2 * 5^2 * 7^1
Умножив эти простые множители, получим НОК чисел а и б: НОК(а, б) = 2^2 * 3^2 * 5^2 * 7^1 = 4 * 9 * 25 * 7 = 6300
Таким образом, НОК чисел а и б равен 6300.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili