Вопрос задан 05.05.2019 в 22:21. Предмет Математика. Спрашивает Чигрин Аркадий.

Скорость велосипедиста в 5 раз больше скорости пешехода.Однажды они отправились одновременно

навстречу друг другу из пунктов, расстояние между которыми 30 км. Какой путьпроедет велосипедист до встречи с пешеходом?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дюбкова Аня.
Ответ 
25км 
пройденное расстояние прямо пропорционально скорости, поэтому 
30 км нужно разделить пропорционально числам 5 и 1 
30 : (1+5) *5 = 25км
0 0
Отвечает Хасанов Руслан.

скорость пешехода x. Тогда скорость велосипедиста 5x

Когда они идут навстречу друг другу их общая скорость равна 5x+x=6x

путь равен 30, значит этот путь они пройдут за 30/6x время то есть 5/x время. Умножим время на скорость получим 5/x умножить на 5x=25

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that the speed of the cyclist is 5 times greater than the speed of the pedestrian. They start simultaneously from two points that are 30 km apart. We need to determine the distance the cyclist will travel before meeting the pedestrian.

Solution

Let's assume the speed of the pedestrian is x km/h. Since the speed of the cyclist is 5 times greater, the speed of the cyclist is 5x km/h.

To find the distance the cyclist will travel before meeting the pedestrian, we need to determine the time it takes for them to meet. We can use the formula:

time = distance / speed

Let's denote the distance the cyclist travels as d km. The distance the pedestrian travels is the same, as they are moving towards each other. Therefore, the distance the pedestrian travels is also d km.

The time it takes for the cyclist to meet the pedestrian can be calculated as:

time = d / (5x)

Similarly, the time it takes for the pedestrian to meet the cyclist can be calculated as:

time = d / x

Since they start simultaneously, the time it takes for both of them to meet is the same. Therefore, we can equate the two expressions for time:

d / (5x) = d / x

To solve for d, we can cross-multiply and simplify the equation:

d = (d / x) * 5x

d = 5d

This equation tells us that the distance the cyclist travels is equal to 5 times the distance the pedestrian travels.

Since the distance between the two points is 30 km, we can set up the equation:

d + d = 30

Simplifying the equation:

2d = 30

d = 15

Therefore, the distance the cyclist will travel before meeting the pedestrian is 15 km.

Answer

The cyclist will travel a distance of 15 km before meeting the pedestrian.

Explanation

The speed of the cyclist is 5 times greater than the speed of the pedestrian. Therefore, the cyclist covers a greater distance in the same amount of time. As a result, the cyclist will travel a distance of 15 km before meeting the pedestrian, who has a slower speed.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос