Вопрос задан 30.04.2019 в 09:28. Предмет Математика. Спрашивает Шамсияров Эмиль.

Задано двузначное число. Сумма квадратов его цифр равна 65. Если это число разделись на сумму его

цифр, то в частном получится 4, а в остатке 3. Найдите это двузначное число. (Я понял что это 47, но мне нужно само оформление)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Решетникова Юлия.

4²+7²=16+49=65

47/(4+7)=4 ост 3

как то так)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given a two-digit number where the sum of the squares of its digits is 65. When this number is divided by the sum of its digits, the quotient is 4 and the remainder is 3. We need to find this two-digit number.

Solution

Let's assume the two-digit number is represented as "10a + b", where "a" and "b" are the digits of the number.

According to the given information, we have the following equations: 1. a^2 + b^2 = 65 2. (10a + b) / (a + b) = 4 with a remainder of 3

To solve this problem, we can use a systematic approach by trying different values for "a" and "b" that satisfy the given conditions.

Let's start by trying different values for "a" and "b" and check if they satisfy the given conditions.

Trial and Error Approach

We can start by trying different values for "a" and "b" and check if they satisfy the given conditions.

1. Let's try a = 1 and b = 0: - a^2 + b^2 = 1^2 + 0^2 = 1 + 0 = 1 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 0) / (1 + 0) = 10 / 1 = 10 (not equal to 4 with a remainder of 3)

2. Let's try a = 1 and b = 1: - a^2 + b^2 = 1^2 + 1^2 = 1 + 1 = 2 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 1) / (1 + 1) = 11 / 2 = 5.5 (not equal to 4 with a remainder of 3)

3. Let's try a = 1 and b = 2: - a^2 + b^2 = 1^2 + 2^2 = 1 + 4 = 5 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 2) / (1 + 2) = 12 / 3 = 4 (equal to 4 with no remainder)

4. Let's try a = 1 and b = 3: - a^2 + b^2 = 1^2 + 3^2 = 1 + 9 = 10 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 3) / (1 + 3) = 13 / 4 = 3.25 (not equal to 4 with a remainder of 3)

5. Let's try a = 1 and b = 4: - a^2 + b^2 = 1^2 + 4^2 = 1 + 16 = 17 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 4) / (1 + 4) = 14 / 5 = 2.8 (not equal to 4 with a remainder of 3)

6. Let's try a = 1 and b = 5: - a^2 + b^2 = 1^2 + 5^2 = 1 + 25 = 26 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 5) / (1 + 5) = 15 / 6 = 2.5 (not equal to 4 with a remainder of 3)

7. Let's try a = 1 and b = 6: - a^2 + b^2 = 1^2 + 6^2 = 1 + 36 = 37 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 6) / (1 + 6) = 16 / 7 = 2.2857 (not equal to 4 with a remainder of 3)

8. Let's try a = 1 and b = 7: - a^2 + b^2 = 1^2 + 7^2 = 1 + 49 = 50 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 7) / (1 + 7) = 17 / 8 = 2.125 (not equal to 4 with a remainder of 3)

9. Let's try a = 1 and b = 8: - a^2 + b^2 = 1^2 + 8^2 = 1 + 64 = 65 (equal to 65) - (10a + b) / (a + b) = (10*1 + 8) / (1 + 8) = 18 / 9 = 2 (equal to 4 with a remainder of 3)

We have found a solution where a = 1 and b = 8. Therefore, the two-digit number is 18.

Conclusion

The two-digit number that satisfies the given conditions is 18.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос