
Задано двузначное число. Сумма квадратов его цифр равна 65. Если это число разделись на сумму его
цифр, то в частном получится 4, а в остатке 3. Найдите это двузначное число. (Я понял что это 47, но мне нужно само оформление)

Ответы на вопрос

4²+7²=16+49=65
47/(4+7)=4 ост 3
как то так)



Problem Analysis
We are given a two-digit number where the sum of the squares of its digits is 65. When this number is divided by the sum of its digits, the quotient is 4 and the remainder is 3. We need to find this two-digit number.Solution
Let's assume the two-digit number is represented as "10a + b", where "a" and "b" are the digits of the number.According to the given information, we have the following equations: 1. a^2 + b^2 = 65 2. (10a + b) / (a + b) = 4 with a remainder of 3
To solve this problem, we can use a systematic approach by trying different values for "a" and "b" that satisfy the given conditions.
Let's start by trying different values for "a" and "b" and check if they satisfy the given conditions.
Trial and Error Approach
We can start by trying different values for "a" and "b" and check if they satisfy the given conditions.1. Let's try a = 1 and b = 0: - a^2 + b^2 = 1^2 + 0^2 = 1 + 0 = 1 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 0) / (1 + 0) = 10 / 1 = 10 (not equal to 4 with a remainder of 3)
2. Let's try a = 1 and b = 1: - a^2 + b^2 = 1^2 + 1^2 = 1 + 1 = 2 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 1) / (1 + 1) = 11 / 2 = 5.5 (not equal to 4 with a remainder of 3)
3. Let's try a = 1 and b = 2: - a^2 + b^2 = 1^2 + 2^2 = 1 + 4 = 5 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 2) / (1 + 2) = 12 / 3 = 4 (equal to 4 with no remainder)
4. Let's try a = 1 and b = 3: - a^2 + b^2 = 1^2 + 3^2 = 1 + 9 = 10 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 3) / (1 + 3) = 13 / 4 = 3.25 (not equal to 4 with a remainder of 3)
5. Let's try a = 1 and b = 4: - a^2 + b^2 = 1^2 + 4^2 = 1 + 16 = 17 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 4) / (1 + 4) = 14 / 5 = 2.8 (not equal to 4 with a remainder of 3)
6. Let's try a = 1 and b = 5: - a^2 + b^2 = 1^2 + 5^2 = 1 + 25 = 26 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 5) / (1 + 5) = 15 / 6 = 2.5 (not equal to 4 with a remainder of 3)
7. Let's try a = 1 and b = 6: - a^2 + b^2 = 1^2 + 6^2 = 1 + 36 = 37 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 6) / (1 + 6) = 16 / 7 = 2.2857 (not equal to 4 with a remainder of 3)
8. Let's try a = 1 and b = 7: - a^2 + b^2 = 1^2 + 7^2 = 1 + 49 = 50 (not equal to 65) - (10a + b) / (a + b) = (10*1 + 7) / (1 + 7) = 17 / 8 = 2.125 (not equal to 4 with a remainder of 3)
9. Let's try a = 1 and b = 8: - a^2 + b^2 = 1^2 + 8^2 = 1 + 64 = 65 (equal to 65) - (10a + b) / (a + b) = (10*1 + 8) / (1 + 8) = 18 / 9 = 2 (equal to 4 with a remainder of 3)
We have found a solution where a = 1 and b = 8. Therefore, the two-digit number is 18.
Conclusion
The two-digit number that satisfies the given conditions is 18.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili