
Вопрос задан 29.04.2019 в 09:48.
Предмет Математика.
Спрашивает Маленкова Кристина.
Найдите все значения а, при которых уравнение х^2+(а-2)х-2а+1=0 не имеет корней


Ответы на вопрос

Отвечает Хан Акназар.
Чтобы не было корней дискриминант меньше нуля тогда
(а-2)^2-4(1-2а) меньше нуля решая это получается что при а от 0 до 2
(а-2)^2-4(1-2а) меньше нуля решая это получается что при а от 0 до 2



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Уравнение х^2 + (а-2)х - 2а + 1 = 0 не имеет корней при определенных значениях а. Давайте найдем эти значения.
Решение:
Для того чтобы уравнение не имело корней, дискриминант должен быть меньше нуля. Дискриминант вычисляется по формуле D = b^2 - 4ac, где a, b и c - коэффициенты уравнения.В данном уравнении коэффициенты равны: a = 1 b = (а-2) c = -2а + 1
Подставим значения коэффициентов в формулу дискриминанта и приравняем его к нулю: (а-2)^2 - 4 * 1 * (-2а + 1) < 0
Раскроем скобки и упростим выражение: а^2 - 4а + 4 - 8а + 4 < 0 а^2 - 12а + 8 < 0
Теперь найдем значения а, при которых это неравенство выполняется.
Ответ:
Уравнение х^2 + (а-2)х - 2а + 1 = 0 не имеет корней при значениях а, удовлетворяющих неравенству а^2 - 12а + 8 < 0.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili