
Баржа в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20
минут, баржа отправилась назад и вернулась в пункт А в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.

Ответы на вопрос

Пусть скорость течения реки х, тогда скорость баржи по течению реки равна 7+х, а против течения 7-х. По течению реки баржа шла часов, а против течения
. Общее время баржи в пути 16-10-1
=
.
По условию задачи составим уравнение
Ответ: скорость течения реки 2 км/ч



Problem Analysis
We are given that a barge left point A at 10:00 and traveled to point B, which is located 15 km away from A. The barge stayed at point B for 1 hour and 20 minutes before returning to point A at 16:00. We need to determine the speed of the river current if the barge's own speed is 7 km/h.Solution
To solve this problem, we can use the formula: distance = speed x time.Let's denote the speed of the river current as x km/h. The barge's speed is given as 7 km/h.
# Distance from A to B
The distance from A to B is given as 15 km.# Time from A to B
The time taken by the barge to travel from A to B is not explicitly given. However, we can calculate it using the formula distance = speed x time.Let's denote the time taken from A to B as t1.
Using the formula, we have: 15 km = (7 km/h + x km/h) x t1
Simplifying the equation, we get: 15 = (7 + x) x t1
# Time from B to A
The time taken by the barge to travel from B to A is given as 1 hour and 20 minutes, which is equivalent to 1.33 hours.Let's denote the time taken from B to A as t2.
Using the formula, we have: 15 km = (7 km/h - x km/h) x t2
Simplifying the equation, we get: 15 = (7 - x) x t2
# Total Time
The total time taken for the round trip is given as 6 hours (from 10:00 to 16:00).Let's denote the total time as t.
Using the formula, we have: t = t1 + t2
Substituting the values, we get: 6 = t1 + 1.33
Simplifying the equation, we get: t1 = 6 - 1.33 t1 = 4.67 hours
# Solving the Equations
Now, we have two equations: 1. 15 = (7 + x) x t1 2. 15 = (7 - x) x t2Substituting the values of t1 and t2, we get: 1. 15 = (7 + x) x 4.67 2. 15 = (7 - x) x 1.33
Simplifying the equations, we get: 1. 15 = 32.69 + 4.67x 2. 15 = 9.31 - 1.33x
Rearranging the equations, we get: 1. 4.67x = 15 - 32.69 2. 1.33x = 15 - 9.31
Simplifying further, we get: 1. 4.67x = -17.69 2. 1.33x = 5.69
Solving for x, we get: 1. x = -17.69 / 4.67 2. x = 5.69 / 1.33
Calculating the values, we get: 1. x ≈ -3.78 km/h 2. x ≈ 4.28 km/h
Since the speed of the river current cannot be negative, we can conclude that the speed of the river current is approximately 4.28 km/h.
Answer
The speed of the river current is approximately 4.28 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili