
Mатериальная точка движется прямолинейно по закону S(t)= 13t + 2t^2 - Найти ее скорость в момент
времени 4 сек

Ответы на вопрос




Calculating the Velocity of a Moving Object
To find the velocity of a material point moving in a straight line according to the law \( S(t) = 13t + 2t^2 \) at the moment of time \( t = 4 \) seconds, we can use the derivative of the position function \( S(t) \) with respect to time \( t \) to find the velocity at that specific moment.
Deriving the Velocity Function
The velocity of the material point at time \( t \) is given by the derivative of the position function \( S(t) \) with respect to time \( t \). The derivative of \( S(t) \) is denoted as \( S'(t) \) or \( v(t) \), where \( v(t) \) represents the velocity function.The position function \( S(t) = 13t + 2t^2 \) can be differentiated to find the velocity function \( v(t) \).
The derivative of \( S(t) \) with respect to \( t \) is: \[ v(t) = \frac{dS}{dt} = \frac{d}{dt}(13t + 2t^2) \]
Calculating the Velocity at \( t = 4 \) Seconds
To find the velocity at the specific moment of time \( t = 4 \) seconds, we can evaluate the velocity function \( v(t) \) at \( t = 4 \).Let's calculate the velocity at \( t = 4 \) seconds using the derived velocity function.
\[ v(t) = 13 + 4t \]
Substitute \( t = 4 \) into the velocity function: \[ v(4) = 13 + 4(4) = 13 + 16 = 29 \]
Answer
The velocity of the material point at \( t = 4 \) seconds is 29 units.This calculation is based on the given position function \( S(t) = 13t + 2t^2 \) and its derivative to find the velocity function.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili