
4^(x-1)+4^(x+2) ≤ 130 CРОЧНО!!!!


Ответы на вопрос

значение логарифма смотрим по таблице или пересчитываем из десятичного (㏒



Solving the Inequality 4^(x-1) + 4^(x+2) ≤ 130
To solve the inequality 4^(x-1) + 4^(x+2) ≤ 130, we can use some algebraic manipulation and properties of exponents.
First, let's rewrite the inequality in terms of a single base:
4^(x-1) + 4^(x+2) ≤ 130
We know that 4^(x+2) can be rewritten as 4^x * 4^2 and 4^(x-1) can be rewritten as 4^x * 4^(-1).
So, the inequality becomes:
4^x * 4^(-1) + 4^x * 4^2 ≤ 130
Now, we can simplify this expression:
4^x * (1/4) + 4^x * 16 ≤ 130
Combining the terms:
(1/4) * 4^x + 16 * 4^x ≤ 130
Now, we can combine the terms with the same base:
(1/4 + 16) * 4^x ≤ 130
Solving for 4^x:
4^x ≤ 130 / (1/4 + 16)
Let's calculate the value of 130 / (1/4 + 16) to find the upper limit for 4^x.
130 / (1/4 + 16) = 130 / (65/4) = 130 * 4/65 = 520/65 = 8
So, we have:
4^x ≤ 8
Now, we need to find the value of x for which 4^x is less than or equal to 8. Taking the logarithm of both sides can help us find this value.
x ≤ log_4(8)
Using the property of logarithms that log_a(b) = log_c(b) / log_c(a), where a, b, c > 0:
x ≤ log(8) / log(4)
Calculating the value:
x ≤ 3/2
Therefore, the solution to the inequality 4^(x-1) + 4^(x+2) ≤ 130 is x ≤ 3/2.
This means that for any value of x less than or equal to 3/2, the inequality will hold true.
Conclusion
The solution to the inequality 4^(x-1) + 4^(x+2) ≤ 130 is x ≤ 3/2.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili