Вопрос задан 05.04.2019 в 08:07. Предмет Математика. Спрашивает Белова Софья.

8*16^cos x-6*4x^cosx+1=0 решение срочно)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ахметов Камиль.
8* 16^{cosx} -6* 4^{cosx} +1=0
 8*(4^{2} ) ^{cosx} -6* 4^{cosx} +1=0


8*(4^{cosx}) ^{2}-6* 4^{cosx} +1=0
показательное квадратное уравнение, замена переменной:
 4^{cosx}=t,     t>0

8t²-6t+1=0.  t₁=1/2. t₂=1/4

обратная замена:
t₁=1/2.
 4^{cosx} = \frac{1}{2} 

 ( 2^{2} )^{cosx} = 2^{-1}  

2^{2cosx} = 2^{-1} 







простейшее показательное уравнение. степени с одинаковыми основаниями равны, => равны показатели:

2cosx=-1.  cosx=-1/2
x=-/+arccos(-1/2)+2πn, n∈Z
x=-/+(π-arccos (1/2))+2πn, n∈Z
x=-/+(π-π/3)+2πn, n∈Z

x₁=-/+(2π/3)+2πn, n∈Z

 t_{2}= \frac{1}{4}, 4^{cosx} = \frac{1}{4}, 4^{cosx}= 4^{-1}

cosx=-1, x₂=π+2πn, n∈Z


0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос