Вопрос задан 28.02.2019 в 02:52. Предмет Математика. Спрашивает Вернер Диана.

Наибольший общий делитель чисел 675и825.A.75.B.25.C.675.D.225.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котов Саша.
Элементарно. Ответ А. 75.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти наибольший общий делитель (НОД) чисел 675 и 825, можно воспользоваться различными методами, такими как метод Эвклида или факторизация чисел на простые множители. Давайте рассмотрим оба метода.

Метод Эвклида:

Метод Эвклида основан на следующем принципе: для любых двух чисел a и b, НОД(a, b) равен НОД(b, a % b), где % обозначает операцию взятия остатка от деления. Этот процесс повторяется до тех пор, пока остаток не станет равным нулю.

Давайте применим этот метод для чисел 675 и 825:

1. Найдем остаток от деления 825 на 675: 825 % 675 = 150

2. Теперь найдем остаток от деления 675 на 150: 675 % 150 = 75

3. Повторим процесс с остатком 150: 150 % 75 = 0

Когда остаток становится равным нулю, мы нашли НОД. В данном случае, НОД(675, 825) = 75.

Факторизация на простые множители:

Другой способ найти НОД чисел 675 и 825 - это разложить каждое число на простые множители и найти их общие множители.

Разложим числа 675 и 825 на простые множители:

- Число 675: 675 = 3 * 3 * 3 * 5 * 5 - Число 825: 825 = 3 * 3 * 5 * 5 * 11

Общие простые множители в этих разложениях - это 3, 3, 5 и 5. Чтобы найти НОД, мы перемножаем эти общие множители: НОД(675, 825) = 3 * 3 * 5 * 5 = 225.

Ответ:

Таким образом, наибольший общий делитель чисел 675 и 825 равен 225. Ответ D.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос