
NOD (1620;3600) найдите нод


Ответы на вопрос




Finding the Greatest Common Divisor (GCD) of 1620 and 3600
To find the greatest common divisor (GCD) of two numbers, we can use the Euclidean algorithm. The Euclidean algorithm is an efficient method for finding the GCD of two numbers.
The GCD of two numbers is the largest positive integer that divides both numbers without leaving a remainder.
To find the GCD of 1620 and 3600, we can use the following steps:
1. Divide the larger number (3600) by the smaller number (1620). 2. Take the remainder of the division. 3. Replace the larger number with the smaller number and the smaller number with the remainder. 4. Repeat steps 1-3 until the remainder is 0. 5. The GCD is the last non-zero remainder.
Let's apply these steps to find the GCD of 1620 and 3600:
1. Divide 3600 by 1620: 3600 ÷ 1620 = 2 remainder 360. 2. Replace 3600 with 1620 and 1620 with 360: 1620 ÷ 360 = 4 remainder 120. 3. Replace 1620 with 360 and 360 with 120: 360 ÷ 120 = 3 remainder 0.
Since the remainder is now 0, we stop. The GCD of 1620 and 3600 is 120.
Therefore, the GCD of 1620 and 3600 is 120.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili