Вопрос задан 15.09.2018 в 22:15. Предмет Математика. Спрашивает Ложечникова Анастасия.

Задача на олимпиаду поехали 3школы отправили 74уч 1школа отправила на 12больше чем 2школа а 3школа

в 2раза больше чем вторая сколько учиников отправила каждая школа
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куранова Тома.
Х+х+12+2х=74; при этом х - вторая школа;решаем уравнение: 4х+12=74; 4х=62; х=15,5 учеников.Такого быть не может,значит,не верно условие
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that three schools participated in an Olympiad. The first school sent 74 students, the second school sent 12 more students than the first school, and the third school sent twice as many students as the second school. We need to determine how many students each school sent.

Solution

Let's assign variables to represent the number of students sent by each school. Let's call the number of students sent by the first school "x".

According to the problem, the second school sent 12 more students than the first school. So the number of students sent by the second school is "x + 12".

The third school sent twice as many students as the second school. So the number of students sent by the third school is "2 * (x + 12)".

We can now set up an equation to solve for "x":

x + (x + 12) + 2 * (x + 12) = 74

Simplifying the equation:

x + x + 12 + 2x + 24 = 74

Combining like terms:

4x + 36 = 74

Subtracting 36 from both sides:

4x = 38

Dividing both sides by 4:

x = 9.5

Since we cannot have a fraction of a student, we can conclude that the first school sent 9 students.

To find the number of students sent by the second school, we substitute the value of x into the expression "x + 12":

9 + 12 = 21

Therefore, the second school sent 21 students.

To find the number of students sent by the third school, we substitute the value of x into the expression "2 * (x + 12)":

2 * (9 + 12) = 42

Therefore, the third school sent 42 students.

Answer

Based on the given information, each school sent the following number of students: - The first school sent 9 students. - The second school sent 21 students. - The third school sent 42 students.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос