Вопрос задан 14.09.2018 в 18:25. Предмет Математика. Спрашивает Доджаев Давид.

В первом бидоне молока в пять раз больше, чем во втором. В каждый бидон добавили по 60 литров

молока. После этого в первом бидоне молока стало в два раза больше чем во втором. Сколько молока было в двух бидонах первоначально?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петрова Арина.
Нехай x литров в 2 бидоне,тогда 5х. л. в первом бедоне,х+60 л. в другом бедоне стало,5х+60 л. стало в первом бедоне
за умоваю
2(х+60)=5х+60
2х+120=5х+60
-3х=-60
х=20
тагда в первам бедоне была 100 в втаром 20
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given two containers of milk, and it is stated that the amount of milk in the first container is five times greater than the amount of milk in the second container. Additionally, 60 liters of milk are added to each container. After this, the amount of milk in the first container becomes twice as much as the amount of milk in the second container. We need to determine the initial amount of milk in both containers.

Solution

Let's assume the initial amount of milk in the second container is x liters. According to the problem, the first container has five times more milk than the second container, so the initial amount of milk in the first container is 5x liters.

After adding 60 liters of milk to each container, the amount of milk in the first container becomes 5x + 60 liters, and the amount of milk in the second container becomes x + 60 liters.

According to the problem, the amount of milk in the first container is twice as much as the amount of milk in the second container after adding the additional milk. So we can write the equation:

5x + 60 = 2(x + 60)

Now we can solve this equation to find the value of x.

Solving the Equation

Let's solve the equation step by step:

5x + 60 = 2x + 120

Subtract 2x from both sides:

5x - 2x + 60 = 120

Simplify:

3x + 60 = 120

Subtract 60 from both sides:

3x = 60

Divide both sides by 3:

x = 20

So the initial amount of milk in the second container is 20 liters.

Calculating the Initial Amount of Milk in the First Container

Now that we know the initial amount of milk in the second container is 20 liters, we can calculate the initial amount of milk in the first container, which is five times greater. Therefore, the initial amount of milk in the first container is:

5 * 20 = 100 liters

Answer

The initial amount of milk in the two containers was 20 liters in the second container and 100 liters in the first container.

Verification

Let's verify our answer by checking if it satisfies all the conditions given in the problem.

1. The amount of milk in the first container is five times greater than the amount of milk in the second container: 100 = 5 * 20 (satisfied). 2. After adding 60 liters of milk to each container, the amount of milk in the first container becomes twice as much as the amount of milk in the second container: 100 + 60 = 2 * (20 + 60) (satisfied).

Therefore, our answer is correct.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос