Решите уравнение 3cos^2 x-2sin x-2=0
Ответы на вопрос
Ответ:
.................. ..............................

Решение уравнения 3cos^2(x) - 2sin(x) - 2 = 0
Давайте начнем с решения данного тригонометрического уравнения. Для начала, заметим, что у нас присутствуют обе тригонометрические функции sin и cos. Мы можем воспользоваться тригонометрическими тождествами для того, чтобы преобразовать уравнение и решить его.
Используем тригонометрические тождества
Мы знаем, что cos^2(x) + sin^2(x) = 1. Мы можем использовать это тождество для того, чтобы выразить sin^2(x) через cos^2(x) или наоборот.
cos^2(x) = 1 - sin^2(x)
Преобразование уравнения
Теперь мы можем заменить cos^2(x) в уравнении:
3(1 - sin^2(x)) - 2sin(x) - 2 = 0
3 - 3sin^2(x) - 2sin(x) - 2 = 0
Теперь у нас получилось квадратное уравнение относительно sin(x). Давайте решим его.
Решение квадратного уравнения
Для решения квадратного уравнения мы можем воспользоваться методом дискриминанта или методом завершения квадрата. Я вижу, что метод завершения квадрата будет более удобным в данном случае.
Сначала приведем уравнение к стандартному виду квадратного уравнения:
-3sin^2(x) - 2sin(x) + 1 = 0
Теперь завершим квадрат, добавив и вычитая квадрат половины коэффициента перед sin(x):
-3(sin^2(x) + (2/3)sin(x)) + 1 = 0
-3(sin^2(x) + (2/3)sin(x) + (1/3)^2) - 3*(1/3)^2 + 1 = 0
-3(sin(x) + (1/3))^2 - 1/3 + 1 = 0
-3(sin(x) + (1/3))^2 - 1/3 + 3/3 = 0
-3(sin(x) + (1/3))^2 + 2/3 = 0
Теперь у нас получилось уравнение в форме (sin(x) + a)^2 = b. Мы можем найти sin(x) и затем найти соответствующие значения x.
Решение и проверка
(sin(x) + (1/3))^2 = -2/9
sin(x) + (1/3) = ±√(-2/9)
sin(x) = -1/3 ± √(2/9)
Теперь, найдя значения sin(x), мы можем найти соответствующие значения x. После этого, для каждого найденного значения x, мы можем проверить их, подставив их обратно в исходное уравнение 3cos^2(x) - 2sin(x) - 2 = 0, чтобы убедиться, что они удовлетворяют исходному уравнению.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
