Вопрос задан 27.11.2023 в 20:17. Предмет Математика. Спрашивает Кушнир Катя.

Помогитееее Бічна сторона рівнобедреного трикутника ділиться точкою дотику вписаного кола у

відношенні 3 : 8, рахуючи від вершини кута при основі трикутника. Знайдіть основу трикутника, якщо його бічна сторона дорівнює 56 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Емельянов Илья.

30,54. Решение на фото во вложении


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Дано, що бічна сторона рівнобедреного трикутника ділиться точкою дотику вписаного кола у відношенні 3:8, рахуючи від вершини кута при основі трикутника. Треба знайти основу трикутника, якщо його бічна сторона дорівнює 56 см.

Позначимо основу трикутника як "х" см. Тоді, відповідно до заданого відношення, відстань від точки дотику до основи буде 3/11 * х, а відстань від точки дотику до вершини кута при основі буде 8/11 * х.

За теоремою Піфагора, сума квадратів катетів рівна квадрату гіпотенузи. Так як трикутник рівнобедрений, то його катети (відстані від точки дотику до основи і до вершини кута при основі) будуть рівними.

Тому, ми можемо записати наступне рівняння: (3/11 * х)^2 + (8/11 * х)^2 = 56^2

Розв'язавши це рівняння, отримаємо значення основи трикутника "х".

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос