Вопрос задан 05.07.2023 в 11:58. Предмет Математика. Спрашивает Джиеналиева Айсулу.

Бічна сторона рівнобедреного трикутника ділиться точкою дотику вписаного кола у відношенні 5:7

рахуючи від вершини трикутника.Знайти основу трикутника, якщо його периметр дорівнює 68
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Князева Даша.

Ответ:

25\frac{1}{19}

Пошаговое объяснение:

за теоремою про 2 дотичини до кола з однієї точці маємо що AL=AH і NC=HC.

Нехай бічна сторона дорівнює 5х+7х, отже основа буде дорівнювати 7х+7х

Маємо рівнянне периметру: (5х+7х)+(5х+7х)+(7х+7х)=68

38х=68

х=34/19

Основа = 14х, отже  34/19 *14 = 476/19 = 25 1/19


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Позначимо основу рівнобедреного трикутника як "b", а бічну сторону як "a". Також позначимо радіус вписаного кола як "r".

Відомо, що точка дотику вписаного кола до бічної сторони трикутника ділить цю сторону на дві частини відношенням 5:7. Тобто, довжина відрізка, що містить точку дотику, дорівнює (5/12) * a, а довжина другого відрізка - (7/12) * a.

Також відомо, що площа рівнобедреного трикутника може бути знайдена за допомогою виразу:

S = (1/2) * a * b.

Також, площа трикутника може бути виражена через радіус вписаного кола за формулою:

S = r * p,

де "p" - півпериметр трикутника (p = (a + b + b) / 2 = (a + 2b) / 2).

Поділимо обидва вирази для площі трикутника:

(1/2) * a * b = r * ((a + 2b) / 2),

a * b = r * (a + 2b),

a * b = r * a + 2r * b.

Тепер ми можемо виразити основу "b" через величини "a" і "r":

b = (a * b - r * a) / (2 * r).

Ми також знаємо, що периметр трикутника дорівнює 68:

P = a + b + b = a + 2b = 68.

З виразу для "b" можна підставити значення "b" в останній рівняння:

a + 2 * ((a * b - r * a) / (2 * r)) = 68,

a + (a * b - r * a) / r = 68,

a * (1 + b - 1) = 68 * r,

a * b = 68 * r.

Ми знаємо, що площа трикутника також виражається як:

S = (1/2) * a * b.

Підставимо значення "a * b" з попереднього рівняння:

S = (1/2) * (68 * r),

S = 34 * r.

З іншого боку, площа трикутника може бути виражена як:

S = r * p,

де "p" - півпериметр трикутника.

Підставимо значення півпериметра "p = 34":

S = r * 34.

Отже, маємо рівність:

34 * r = 34 * r.

Це вірно для будь-якого значення радіусу "r". Тобто, відношення сторін "5:7" впливає на залежність між "a" і "b", але не має впливу на значення радіусу "r".

Отже, на жаль, з наданих даних не можна однозначно визначити довжину основи "b".

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос