Вопрос задан 16.11.2023 в 12:42. Предмет Математика. Спрашивает Очеретный Иван.

3/4*5/7*8/9*7/10:(15/16*14/39*24/25*13/21):(2 1/8*2 2/7*2 15/17*4 2/3:196) по действиям

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Поплавский Андрей.

Ответ:

5

Пошаговое объяснение:

1) 15/16 * 14/39 = 5/8 * 7/13 = 35/104

2) 35/104 * 24/25 = 7/13 * 3/5 = 21/65

3) 21/65 * 13/21 = 1/5 * 1/1 = 1/5

4) 2. 1/8 * 2. 2/7 = 17/8 * 16/7 = 17/1 * 2/7 = 34/7

5) 34/7 * 2. 15/17 = 34/7 * 49/17 = 2/1 * 7/1 = 14/1 = 14

6) 14 * 4. 2/3 = 14 * 14/3 = 196/3

7) 196/3 : 196 = 196/3 * 1/196 = 1/3 * 1/1 = 1/3

8) 3/4 * 5/7 = 15/28

9) 15/28 * 8/9 = 5/7 * 2/3 = 10/21

10) 10/21 * 7/10 = 1/3 * 1/1 = 1/3

11) 1/3 : 1/5 = 1/3 * 5/1 = 5/3

12) 5/3 : 1/3 = 5/3 * 3/1 = 5/1 * 1/1= 5/1 = 5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберем данное выражение по шагам, чтобы понять порядок операций:

1. Умножение и деление: - \(3/4 \times 5/7 \times 8/9 \times 7/10\) - \((15/16 \times 14/39 \times 24/25 \times 13/21) \div (2 + 1/8 \times 2 + 2/7 \times 2 + 15/17 \times 4 + 2/3 \div 196)\)

2. Умножение внутри каждой скобки.

3. Сложение и вычитание внутри каждой скобки.

Теперь рассмотрим каждый этап подробнее:

1. Умножение и деление: - \(3/4 \times 5/7 \times 8/9 \times 7/10 = \frac{3 \times 5 \times 8 \times 7}{4 \times 7 \times 9 \times 10} = \frac{840}{2520} = \frac{1}{3}\)

- \((15/16 \times 14/39 \times 24/25 \times 13/21) \div (2 + 1/8 \times 2 + 2/7 \times 2 + 15/17 \times 4 + 2/3 \div 196)\)

2. Умножение внутри каждой скобки: - \((15/16 \times 14/39 \times 24/25 \times 13/21) = \frac{15 \times 14 \times 24 \times 13}{16 \times 39 \times 25 \times 21} = \frac{65520}{43680} = \frac{3}{2}\)

- \((2 + 1/8 \times 2 + 2/7 \times 2 + 15/17 \times 4 + 2/3 \div 196)\)

3. Сложение и вычитание внутри каждой скобки: - \(2 + \frac{1}{8} \times 2 + \frac{2}{7} \times 2 + \frac{15}{17} \times 4 + \frac{2}{3} \div 196\) - \(= 2 + \frac{1}{4} + \frac{4}{7} + \frac{60}{17} + \frac{2}{3} \div 196\) - \(= 2 + \frac{1}{4} + \frac{4}{7} + \frac{60}{17} + \frac{2}{588}\) - \(= \frac{336 + 147 + 96 + 240 + 2}{168} = \frac{821}{168}\)

Теперь объединим все вместе: - \(\frac{\frac{3}{2}}{\frac{821}{168}}\) - Разделим числитель дроби на числитель дроби и знаменатель дроби на знаменатель дроби: - \(= \frac{3}{2} \div \frac{821}{168} = \frac{3}{2} \times \frac{168}{821}\) - \(= \frac{3 \times 168}{2 \times 821} = \frac{504}{1642} = \frac{252}{821}\)

Итак, результат данного выражения равен \(\frac{252}{821}\).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос